Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrrel2 Structured version   Visualization version   GIF version

Theorem dftrrel2 36040
 Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
dftrrel2 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))

Proof of Theorem dftrrel2
StepHypRef Expression
1 df-trrel 36037 . 2 ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
2 dfrel6 35831 . . . . . 6 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
32biimpi 219 . . . . 5 (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
43, 3coeq12d 5702 . . . 4 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) = (𝑅𝑅))
54, 3sseq12d 3949 . . 3 (Rel 𝑅 → (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ↔ (𝑅𝑅) ⊆ 𝑅))
65pm5.32ri 579 . 2 ((((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
71, 6bitri 278 1 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∩ cin 3881   ⊆ wss 3882   × cxp 5520  dom cdm 5522  ran crn 5523   ∘ ccom 5526  Rel wrel 5527   TrRel wtrrel 35695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-nul 4246  df-if 4428  df-sn 4528  df-pr 4530  df-op 4534  df-br 5034  df-opab 5096  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-trrel 36037 This theorem is referenced by:  dftrrel3  36041  eltrrelsrel  36044  trreleq  36045  dfeqvrel2  36052
 Copyright terms: Public domain W3C validator