| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumdifsnd | Structured version Visualization version GIF version | ||
| Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsumdifsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumdifsnd.p | ⊢ + = (+g‘𝐺) |
| gsumdifsnd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumdifsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| gsumdifsnd.f | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) |
| gsumdifsnd.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsumdifsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐴) |
| gsumdifsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsumdifsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
| Ref | Expression |
|---|---|
| gsumdifsnd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumdifsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | gsumdifsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | gsumdifsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 5 | gsumdifsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 6 | gsumdifsnd.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 7 | gsumdifsnd.f | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) | |
| 8 | gsumdifsnd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐴) | |
| 9 | 8 | snssd 4762 | . . . . 5 ⊢ (𝜑 → {𝑀} ⊆ 𝐴) |
| 10 | difin2 4250 | . . . . 5 ⊢ ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) |
| 12 | difid 4325 | . . . 4 ⊢ ({𝑀} ∖ {𝑀}) = ∅ | |
| 13 | 11, 12 | eqtr3di 2783 | . . 3 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅) |
| 14 | difsnid 4763 | . . . . 5 ⊢ (𝑀 ∈ 𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) | |
| 15 | 8, 14 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) |
| 16 | 15 | eqcomd 2739 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀})) |
| 17 | 1, 2, 3, 4, 5, 6, 7, 13, 16 | gsumsplit2 19845 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
| 18 | cmnmnd 19713 | . . . . 5 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 19 | 4, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 20 | gsumdifsnd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 21 | gsumdifsnd.s | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
| 22 | 1, 19, 8, 20, 21 | gsumsnd 19868 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
| 23 | 22 | oveq2d 7370 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
| 24 | 17, 23 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 finSupp cfsupp 9254 Basecbs 17124 +gcplusg 17165 0gc0g 17347 Σg cgsu 17348 Mndcmnd 18646 CMndccmn 19696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-0g 17349 df-gsum 17350 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 |
| This theorem is referenced by: dmatmul 22415 matunitlindflem1 37679 lincdifsn 48552 |
| Copyright terms: Public domain | W3C validator |