MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdifsnd Structured version   Visualization version   GIF version

Theorem gsumdifsnd 19074
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumdifsnd.b 𝐵 = (Base‘𝐺)
gsumdifsnd.p + = (+g𝐺)
gsumdifsnd.g (𝜑𝐺 ∈ CMnd)
gsumdifsnd.a (𝜑𝐴𝑊)
gsumdifsnd.f (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
gsumdifsnd.e ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumdifsnd.m (𝜑𝑀𝐴)
gsumdifsnd.y (𝜑𝑌𝐵)
gsumdifsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumdifsnd (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem gsumdifsnd
StepHypRef Expression
1 gsumdifsnd.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2798 . . 3 (0g𝐺) = (0g𝐺)
3 gsumdifsnd.p . . 3 + = (+g𝐺)
4 gsumdifsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsumdifsnd.a . . 3 (𝜑𝐴𝑊)
6 gsumdifsnd.e . . 3 ((𝜑𝑘𝐴) → 𝑋𝐵)
7 gsumdifsnd.f . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
8 difid 4284 . . . 4 ({𝑀} ∖ {𝑀}) = ∅
9 gsumdifsnd.m . . . . . 6 (𝜑𝑀𝐴)
109snssd 4702 . . . . 5 (𝜑 → {𝑀} ⊆ 𝐴)
11 difin2 4216 . . . . 5 ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
1210, 11syl 17 . . . 4 (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
138, 12syl5reqr 2848 . . 3 (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅)
14 difsnid 4703 . . . . 5 (𝑀𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
159, 14syl 17 . . . 4 (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1615eqcomd 2804 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀}))
171, 2, 3, 4, 5, 6, 7, 13, 16gsumsplit2 19042 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
18 cmnmnd 18914 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
194, 18syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
20 gsumdifsnd.y . . . 4 (𝜑𝑌𝐵)
21 gsumdifsnd.s . . . 4 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
221, 19, 9, 20, 21gsumsnd 19065 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2322oveq2d 7151 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
2417, 23eqtrd 2833 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135   finSupp cfsupp 8817  Basecbs 16475  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900
This theorem is referenced by:  dmatmul  21102  matunitlindflem1  35053  lincdifsn  44833
  Copyright terms: Public domain W3C validator