MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdifsnd Structured version   Visualization version   GIF version

Theorem gsumdifsnd 19920
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumdifsnd.b 𝐵 = (Base‘𝐺)
gsumdifsnd.p + = (+g𝐺)
gsumdifsnd.g (𝜑𝐺 ∈ CMnd)
gsumdifsnd.a (𝜑𝐴𝑊)
gsumdifsnd.f (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
gsumdifsnd.e ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumdifsnd.m (𝜑𝑀𝐴)
gsumdifsnd.y (𝜑𝑌𝐵)
gsumdifsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumdifsnd (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem gsumdifsnd
StepHypRef Expression
1 gsumdifsnd.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2725 . . 3 (0g𝐺) = (0g𝐺)
3 gsumdifsnd.p . . 3 + = (+g𝐺)
4 gsumdifsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsumdifsnd.a . . 3 (𝜑𝐴𝑊)
6 gsumdifsnd.e . . 3 ((𝜑𝑘𝐴) → 𝑋𝐵)
7 gsumdifsnd.f . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
8 gsumdifsnd.m . . . . . 6 (𝜑𝑀𝐴)
98snssd 4808 . . . . 5 (𝜑 → {𝑀} ⊆ 𝐴)
10 difin2 4286 . . . . 5 ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
119, 10syl 17 . . . 4 (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
12 difid 4366 . . . 4 ({𝑀} ∖ {𝑀}) = ∅
1311, 12eqtr3di 2780 . . 3 (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅)
14 difsnid 4809 . . . . 5 (𝑀𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
158, 14syl 17 . . . 4 (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1615eqcomd 2731 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀}))
171, 2, 3, 4, 5, 6, 7, 13, 16gsumsplit2 19888 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
18 cmnmnd 19756 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
194, 18syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
20 gsumdifsnd.y . . . 4 (𝜑𝑌𝐵)
21 gsumdifsnd.s . . . 4 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
221, 19, 8, 20, 21gsumsnd 19911 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2322oveq2d 7432 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
2417, 23eqtrd 2765 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4318  {csn 4624   class class class wbr 5143  cmpt 5226  cfv 6543  (class class class)co 7416   finSupp cfsupp 9385  Basecbs 17179  +gcplusg 17232  0gc0g 17420   Σg cgsu 17421  Mndcmnd 18693  CMndccmn 19739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7991  df-2nd 7992  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-0g 17422  df-gsum 17423  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19028  df-cntz 19272  df-cmn 19741
This theorem is referenced by:  dmatmul  22417  matunitlindflem1  37146  lincdifsn  47604
  Copyright terms: Public domain W3C validator