MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdifsnd Structured version   Visualization version   GIF version

Theorem gsumdifsnd 19980
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumdifsnd.b 𝐵 = (Base‘𝐺)
gsumdifsnd.p + = (+g𝐺)
gsumdifsnd.g (𝜑𝐺 ∈ CMnd)
gsumdifsnd.a (𝜑𝐴𝑊)
gsumdifsnd.f (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
gsumdifsnd.e ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumdifsnd.m (𝜑𝑀𝐴)
gsumdifsnd.y (𝜑𝑌𝐵)
gsumdifsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumdifsnd (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem gsumdifsnd
StepHypRef Expression
1 gsumdifsnd.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
3 gsumdifsnd.p . . 3 + = (+g𝐺)
4 gsumdifsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsumdifsnd.a . . 3 (𝜑𝐴𝑊)
6 gsumdifsnd.e . . 3 ((𝜑𝑘𝐴) → 𝑋𝐵)
7 gsumdifsnd.f . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
8 gsumdifsnd.m . . . . . 6 (𝜑𝑀𝐴)
98snssd 4808 . . . . 5 (𝜑 → {𝑀} ⊆ 𝐴)
10 difin2 4300 . . . . 5 ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
119, 10syl 17 . . . 4 (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
12 difid 4375 . . . 4 ({𝑀} ∖ {𝑀}) = ∅
1311, 12eqtr3di 2791 . . 3 (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅)
14 difsnid 4809 . . . . 5 (𝑀𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
158, 14syl 17 . . . 4 (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1615eqcomd 2742 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀}))
171, 2, 3, 4, 5, 6, 7, 13, 16gsumsplit2 19948 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
18 cmnmnd 19816 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
194, 18syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
20 gsumdifsnd.y . . . 4 (𝜑𝑌𝐵)
21 gsumdifsnd.s . . . 4 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
221, 19, 8, 20, 21gsumsnd 19971 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2322oveq2d 7448 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
2417, 23eqtrd 2776 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332  {csn 4625   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432   finSupp cfsupp 9402  Basecbs 17248  +gcplusg 17298  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748  CMndccmn 19799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801
This theorem is referenced by:  dmatmul  22504  matunitlindflem1  37624  lincdifsn  48346
  Copyright terms: Public domain W3C validator