| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumdifsnd | Structured version Visualization version GIF version | ||
| Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsumdifsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumdifsnd.p | ⊢ + = (+g‘𝐺) |
| gsumdifsnd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumdifsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| gsumdifsnd.f | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) |
| gsumdifsnd.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsumdifsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐴) |
| gsumdifsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsumdifsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
| Ref | Expression |
|---|---|
| gsumdifsnd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumdifsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | gsumdifsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | gsumdifsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 5 | gsumdifsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 6 | gsumdifsnd.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 7 | gsumdifsnd.f | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) | |
| 8 | gsumdifsnd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐴) | |
| 9 | 8 | snssd 4763 | . . . . 5 ⊢ (𝜑 → {𝑀} ⊆ 𝐴) |
| 10 | difin2 4254 | . . . . 5 ⊢ ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) |
| 12 | difid 4329 | . . . 4 ⊢ ({𝑀} ∖ {𝑀}) = ∅ | |
| 13 | 11, 12 | eqtr3di 2779 | . . 3 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅) |
| 14 | difsnid 4764 | . . . . 5 ⊢ (𝑀 ∈ 𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) | |
| 15 | 8, 14 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) |
| 16 | 15 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀})) |
| 17 | 1, 2, 3, 4, 5, 6, 7, 13, 16 | gsumsplit2 19826 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
| 18 | cmnmnd 19694 | . . . . 5 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 19 | 4, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 20 | gsumdifsnd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 21 | gsumdifsnd.s | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
| 22 | 1, 19, 8, 20, 21 | gsumsnd 19849 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
| 23 | 22 | oveq2d 7369 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
| 24 | 17, 23 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 finSupp cfsupp 9270 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Σg cgsu 17362 Mndcmnd 18626 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 |
| This theorem is referenced by: dmatmul 22400 matunitlindflem1 37595 lincdifsn 48410 |
| Copyright terms: Public domain | W3C validator |