MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdifsnd Structured version   Visualization version   GIF version

Theorem gsumdifsnd 19746
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumdifsnd.b 𝐵 = (Base‘𝐺)
gsumdifsnd.p + = (+g𝐺)
gsumdifsnd.g (𝜑𝐺 ∈ CMnd)
gsumdifsnd.a (𝜑𝐴𝑊)
gsumdifsnd.f (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
gsumdifsnd.e ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumdifsnd.m (𝜑𝑀𝐴)
gsumdifsnd.y (𝜑𝑌𝐵)
gsumdifsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumdifsnd (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem gsumdifsnd
StepHypRef Expression
1 gsumdifsnd.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2733 . . 3 (0g𝐺) = (0g𝐺)
3 gsumdifsnd.p . . 3 + = (+g𝐺)
4 gsumdifsnd.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsumdifsnd.a . . 3 (𝜑𝐴𝑊)
6 gsumdifsnd.e . . 3 ((𝜑𝑘𝐴) → 𝑋𝐵)
7 gsumdifsnd.f . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
8 gsumdifsnd.m . . . . . 6 (𝜑𝑀𝐴)
98snssd 4773 . . . . 5 (𝜑 → {𝑀} ⊆ 𝐴)
10 difin2 4255 . . . . 5 ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
119, 10syl 17 . . . 4 (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
12 difid 4334 . . . 4 ({𝑀} ∖ {𝑀}) = ∅
1311, 12eqtr3di 2788 . . 3 (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅)
14 difsnid 4774 . . . . 5 (𝑀𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
158, 14syl 17 . . . 4 (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1615eqcomd 2739 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀}))
171, 2, 3, 4, 5, 6, 7, 13, 16gsumsplit2 19714 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
18 cmnmnd 19587 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
194, 18syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
20 gsumdifsnd.y . . . 4 (𝜑𝑌𝐵)
21 gsumdifsnd.s . . . 4 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
221, 19, 8, 20, 21gsumsnd 19737 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2322oveq2d 7377 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
2417, 23eqtrd 2773 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4286  {csn 4590   class class class wbr 5109  cmpt 5192  cfv 6500  (class class class)co 7361   finSupp cfsupp 9311  Basecbs 17091  +gcplusg 17141  0gc0g 17329   Σg cgsu 17330  Mndcmnd 18564  CMndccmn 19570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-oi 9454  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577  df-seq 13916  df-hash 14240  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-0g 17331  df-gsum 17332  df-mre 17474  df-mrc 17475  df-acs 17477  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-submnd 18610  df-mulg 18881  df-cntz 19105  df-cmn 19572
This theorem is referenced by:  dmatmul  21869  matunitlindflem1  36124  lincdifsn  46595
  Copyright terms: Public domain W3C validator