MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcnlp Structured version   Visualization version   GIF version

Theorem limcnlp 23855
Description: If 𝐵 is not a limit point of the domain of the function 𝐹, then every point is a limit of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
limccl.a (𝜑𝐴 ⊆ ℂ)
limccl.b (𝜑𝐵 ∈ ℂ)
ellimc2.k 𝐾 = (TopOpen‘ℂfld)
limcnlp.n (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴))
Assertion
Ref Expression
limcnlp (𝜑 → (𝐹 lim 𝐵) = ℂ)

Proof of Theorem limcnlp
Dummy variables 𝑥 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
2 limccl.a . . . 4 (𝜑𝐴 ⊆ ℂ)
3 limccl.b . . . 4 (𝜑𝐵 ∈ ℂ)
4 ellimc2.k . . . 4 𝐾 = (TopOpen‘ℂfld)
51, 2, 3, 4ellimc2 23854 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
64cnfldtop 22797 . . . . . . . . . 10 𝐾 ∈ Top
72adantr 468 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝐴 ⊆ ℂ)
87ssdifssd 3947 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
94cnfldtopon 22796 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℂ)
109toponunii 20931 . . . . . . . . . . 11 ℂ = 𝐾
1110clscld 21062 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾))
126, 8, 11sylancr 577 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾))
1310cldopn 21046 . . . . . . . . 9 (((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾)
1412, 13syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾)
15 limcnlp.n . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴))
1610islp 21155 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
176, 2, 16sylancr 577 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
1815, 17mtbid 315 . . . . . . . . . 10 (𝜑 → ¬ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
193, 18eldifd 3780 . . . . . . . . 9 (𝜑𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
2019adantr 468 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
21 difin2 4091 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝐵}) ⊆ ℂ → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
228, 21syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
2310sscls 21071 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
246, 8, 23sylancr 577 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
25 ssdif0 4143 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ↔ ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅)
2624, 25sylib 209 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅)
2722, 26eqtr3d 2842 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})) = ∅)
2827imaeq2d 5676 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ∅))
29 ima0 5691 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
3028, 29syl6eq 2856 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = ∅)
31 0ss 4170 . . . . . . . . 9 ∅ ⊆ 𝑢
3230, 31syl6eqss 3852 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)
33 eleq2 2874 . . . . . . . . . 10 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐵𝑣𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))))
34 ineq1 4006 . . . . . . . . . . . 12 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 5676 . . . . . . . . . . 11 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 3829 . . . . . . . . . 10 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3733, 36anbi12d 618 . . . . . . . . 9 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
3837rspcev 3502 . . . . . . . 8 (((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾 ∧ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3914, 20, 32, 38syl12anc 856 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
4039a1d 25 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
4140ralrimivw 3155 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
4241ex 399 . . . 4 (𝜑 → (𝑥 ∈ ℂ → ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
4342pm4.71d 553 . . 3 (𝜑 → (𝑥 ∈ ℂ ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
445, 43bitr4d 273 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ℂ))
4544eqrdv 2804 1 (𝜑 → (𝐹 lim 𝐵) = ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wral 3096  wrex 3097  cdif 3766  cin 3768  wss 3769  c0 4116  {csn 4370  cima 5314  wf 6093  cfv 6097  (class class class)co 6870  cc 10215  TopOpenctopn 16283  fldccnfld 19950  Topctop 20908  Clsdccld 21031  clsccl 21033  limPtclp 21149   lim climc 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-er 7975  df-map 8090  df-pm 8091  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fi 8552  df-sup 8583  df-inf 8584  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-fz 12546  df-seq 13021  df-exp 13080  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-rest 16284  df-topn 16285  df-topgen 16305  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-cnfld 19951  df-top 20909  df-topon 20926  df-topsp 20948  df-bases 20961  df-cld 21034  df-cls 21036  df-lp 21151  df-cnp 21243  df-xms 22335  df-ms 22336  df-limc 23843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator