Step | Hyp | Ref
| Expression |
1 | | limccl.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
2 | | limccl.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
3 | | limccl.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
4 | | ellimc2.k |
. . . 4
⊢ 𝐾 =
(TopOpen‘ℂfld) |
5 | 1, 2, 3, 4 | ellimc2 25041 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))) |
6 | 4 | cnfldtop 23947 |
. . . . . . . . . 10
⊢ 𝐾 ∈ Top |
7 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ⊆ ℂ) |
8 | 7 | ssdifssd 4077 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
9 | 4 | cnfldtopon 23946 |
. . . . . . . . . . . 12
⊢ 𝐾 ∈
(TopOn‘ℂ) |
10 | 9 | toponunii 22065 |
. . . . . . . . . . 11
⊢ ℂ =
∪ 𝐾 |
11 | 10 | clscld 22198 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾)) |
12 | 6, 8, 11 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾)) |
13 | 10 | cldopn 22182 |
. . . . . . . . 9
⊢
(((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾) |
15 | | limcnlp.n |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
16 | 10 | islp 22291 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
17 | 6, 2, 16 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
18 | 15, 17 | mtbid 324 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
19 | 3, 18 | eldifd 3898 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
20 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
21 | | difin2 4225 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝐵}) ⊆ ℂ → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) |
22 | 8, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) |
23 | 10 | sscls 22207 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
24 | 6, 8, 23 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
25 | | ssdif0 4297 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ↔ ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅) |
26 | 24, 25 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅) |
27 | 22, 26 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})) = ∅) |
28 | 27 | imaeq2d 5969 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ∅)) |
29 | | ima0 5985 |
. . . . . . . . . 10
⊢ (𝐹 “ ∅) =
∅ |
30 | 28, 29 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = ∅) |
31 | | 0ss 4330 |
. . . . . . . . 9
⊢ ∅
⊆ 𝑢 |
32 | 30, 31 | eqsstrdi 3975 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) |
33 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐵 ∈ 𝑣 ↔ 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))) |
34 | | ineq1 4139 |
. . . . . . . . . . . 12
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) |
35 | 34 | imaeq2d 5969 |
. . . . . . . . . . 11
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))) |
36 | 35 | sseq1d 3952 |
. . . . . . . . . 10
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
37 | 33, 36 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) |
38 | 37 | rspcev 3561 |
. . . . . . . 8
⊢
(((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾 ∧ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
39 | 14, 20, 32, 38 | syl12anc 834 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
40 | 39 | a1d 25 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) |
41 | 40 | ralrimivw 3104 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) |
42 | 41 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℂ → ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))) |
43 | 42 | pm4.71d 562 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℂ ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))) |
44 | 5, 43 | bitr4d 281 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ℂ)) |
45 | 44 | eqrdv 2736 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) |