MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcnlp Structured version   Visualization version   GIF version

Theorem limcnlp 24729
Description: If 𝐵 is not a limit point of the domain of the function 𝐹, then every point is a limit of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
limccl.a (𝜑𝐴 ⊆ ℂ)
limccl.b (𝜑𝐵 ∈ ℂ)
ellimc2.k 𝐾 = (TopOpen‘ℂfld)
limcnlp.n (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴))
Assertion
Ref Expression
limcnlp (𝜑 → (𝐹 lim 𝐵) = ℂ)

Proof of Theorem limcnlp
Dummy variables 𝑥 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
2 limccl.a . . . 4 (𝜑𝐴 ⊆ ℂ)
3 limccl.b . . . 4 (𝜑𝐵 ∈ ℂ)
4 ellimc2.k . . . 4 𝐾 = (TopOpen‘ℂfld)
51, 2, 3, 4ellimc2 24728 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
64cnfldtop 23635 . . . . . . . . . 10 𝐾 ∈ Top
72adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝐴 ⊆ ℂ)
87ssdifssd 4043 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
94cnfldtopon 23634 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℂ)
109toponunii 21767 . . . . . . . . . . 11 ℂ = 𝐾
1110clscld 21898 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾))
126, 8, 11sylancr 590 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾))
1310cldopn 21882 . . . . . . . . 9 (((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾)
1412, 13syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾)
15 limcnlp.n . . . . . . . . . . 11 (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴))
1610islp 21991 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
176, 2, 16sylancr 590 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
1815, 17mtbid 327 . . . . . . . . . 10 (𝜑 → ¬ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
193, 18eldifd 3864 . . . . . . . . 9 (𝜑𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
2019adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
21 difin2 4192 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝐵}) ⊆ ℂ → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
228, 21syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
2310sscls 21907 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
246, 8, 23sylancr 590 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
25 ssdif0 4264 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ↔ ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅)
2624, 25sylib 221 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅)
2722, 26eqtr3d 2773 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})) = ∅)
2827imaeq2d 5914 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ∅))
29 ima0 5930 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
3028, 29eqtrdi 2787 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = ∅)
31 0ss 4297 . . . . . . . . 9 ∅ ⊆ 𝑢
3230, 31eqsstrdi 3941 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)
33 eleq2 2819 . . . . . . . . . 10 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐵𝑣𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))))
34 ineq1 4106 . . . . . . . . . . . 12 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 5914 . . . . . . . . . . 11 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 3918 . . . . . . . . . 10 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3733, 36anbi12d 634 . . . . . . . . 9 (𝑣 = (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
3837rspcev 3527 . . . . . . . 8 (((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾 ∧ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3914, 20, 32, 38syl12anc 837 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
4039a1d 25 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
4140ralrimivw 3096 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
4241ex 416 . . . 4 (𝜑 → (𝑥 ∈ ℂ → ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
4342pm4.71d 565 . . 3 (𝜑 → (𝑥 ∈ ℂ ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑣𝐾 (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
445, 43bitr4d 285 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ℂ))
4544eqrdv 2734 1 (𝜑 → (𝐹 lim 𝐵) = ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  cdif 3850  cin 3852  wss 3853  c0 4223  {csn 4527  cima 5539  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  TopOpenctopn 16880  fldccnfld 20317  Topctop 21744  Clsdccld 21867  clsccl 21869  limPtclp 21985   lim climc 24713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fi 9005  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-fz 13061  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mulr 16763  df-starv 16764  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-rest 16881  df-topn 16882  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-cls 21872  df-lp 21987  df-cnp 22079  df-xms 23172  df-ms 23173  df-limc 24717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator