![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difelsiga | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.) |
Ref | Expression |
---|---|
difelsiga | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
2 | elssuni 4942 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) | |
3 | difin2 4307 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑆 → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
5 | isrnsigau 34108 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
6 | 5 | simprd 495 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
7 | 6 | simp2d 1142 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆) |
8 | difeq2 4130 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (∪ 𝑆 ∖ 𝑥) = (∪ 𝑆 ∖ 𝐵)) | |
9 | 8 | eleq1d 2824 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐵) ∈ 𝑆)) |
10 | 9 | rspccva 3621 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
11 | 7, 10 | sylan 580 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
12 | 11 | 3adant2 1130 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
13 | intprg 4986 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
14 | 12, 1, 13 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
15 | 4, 14 | eqtr4d 2778 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴}) |
16 | simp1 1135 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
17 | prssi 4826 | . . . . 5 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) | |
18 | 12, 1, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
19 | prex 5443 | . . . . 5 ⊢ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ V | |
20 | 19 | elpw 4609 | . . . 4 ⊢ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
21 | 18, 20 | sylibr 234 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) |
22 | prct 32732 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) | |
23 | 12, 1, 22 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) |
24 | prnzg 4783 | . . . 4 ⊢ ((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) | |
25 | 12, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) |
26 | sigaclci 34113 | . . 3 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅)) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) | |
27 | 16, 21, 23, 25, 26 | syl22anc 839 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) |
28 | 15, 27 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {cpr 4633 ∪ cuni 4912 ∩ cint 4951 class class class wbr 5148 ran crn 5690 ωcom 7887 ≼ cdom 8982 sigAlgebracsiga 34089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-ac2 10501 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-ac 10154 df-siga 34090 |
This theorem is referenced by: inelsiga 34116 sigainb 34117 sigaldsys 34140 cldssbrsiga 34168 measxun2 34191 measssd 34196 measunl 34197 measiuns 34198 measiun 34199 meascnbl 34200 imambfm 34244 dya2iocbrsiga 34257 dya2icobrsiga 34258 sxbrsigalem2 34268 probdif 34402 |
Copyright terms: Public domain | W3C validator |