Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelsiga Structured version   Visualization version   GIF version

Theorem difelsiga 34164
Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.)
Assertion
Ref Expression
difelsiga ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)

Proof of Theorem difelsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → 𝐴𝑆)
2 elssuni 4913 . . . 4 (𝐴𝑆𝐴 𝑆)
3 difin2 4276 . . . 4 (𝐴 𝑆 → (𝐴𝐵) = (( 𝑆𝐵) ∩ 𝐴))
41, 2, 33syl 18 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) = (( 𝑆𝐵) ∩ 𝐴))
5 isrnsigau 34158 . . . . . . . 8 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
65simprd 495 . . . . . . 7 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
76simp2d 1143 . . . . . 6 (𝑆 ran sigAlgebra → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
8 difeq2 4095 . . . . . . . 8 (𝑥 = 𝐵 → ( 𝑆𝑥) = ( 𝑆𝐵))
98eleq1d 2819 . . . . . . 7 (𝑥 = 𝐵 → (( 𝑆𝑥) ∈ 𝑆 ↔ ( 𝑆𝐵) ∈ 𝑆))
109rspccva 3600 . . . . . 6 ((∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
117, 10sylan 580 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
12113adant2 1131 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
13 intprg 4957 . . . 4 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} = (( 𝑆𝐵) ∩ 𝐴))
1412, 1, 13syl2anc 584 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} = (( 𝑆𝐵) ∩ 𝐴))
154, 14eqtr4d 2773 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) = {( 𝑆𝐵), 𝐴})
16 simp1 1136 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → 𝑆 ran sigAlgebra)
17 prssi 4797 . . . . 5 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
1812, 1, 17syl2anc 584 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
19 prex 5407 . . . . 5 {( 𝑆𝐵), 𝐴} ∈ V
2019elpw 4579 . . . 4 ({( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
2118, 20sylibr 234 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆)
22 prct 32692 . . . 4 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} ≼ ω)
2312, 1, 22syl2anc 584 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ≼ ω)
24 prnzg 4754 . . . 4 (( 𝑆𝐵) ∈ 𝑆 → {( 𝑆𝐵), 𝐴} ≠ ∅)
2512, 24syl 17 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ≠ ∅)
26 sigaclci 34163 . . 3 (((𝑆 ran sigAlgebra ∧ {( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({( 𝑆𝐵), 𝐴} ≼ ω ∧ {( 𝑆𝐵), 𝐴} ≠ ∅)) → {( 𝑆𝐵), 𝐴} ∈ 𝑆)
2716, 21, 23, 25, 26syl22anc 838 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ∈ 𝑆)
2815, 27eqeltrd 2834 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {cpr 4603   cuni 4883   cint 4922   class class class wbr 5119  ran crn 5655  ωcom 7861  cdom 8957  sigAlgebracsiga 34139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-siga 34140
This theorem is referenced by:  inelsiga  34166  sigainb  34167  sigaldsys  34190  cldssbrsiga  34218  measxun2  34241  measssd  34246  measunl  34247  measiuns  34248  measiun  34249  meascnbl  34250  imambfm  34294  dya2iocbrsiga  34307  dya2icobrsiga  34308  sxbrsigalem2  34318  probdif  34452
  Copyright terms: Public domain W3C validator