| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difelsiga | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.) |
| Ref | Expression |
|---|---|
| difelsiga | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
| 2 | elssuni 4887 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) | |
| 3 | difin2 4248 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑆 → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
| 5 | isrnsigau 34140 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
| 6 | 5 | simprd 495 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
| 7 | 6 | simp2d 1143 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆) |
| 8 | difeq2 4067 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (∪ 𝑆 ∖ 𝑥) = (∪ 𝑆 ∖ 𝐵)) | |
| 9 | 8 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐵) ∈ 𝑆)) |
| 10 | 9 | rspccva 3571 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 11 | 7, 10 | sylan 580 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 13 | intprg 4929 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
| 14 | 12, 1, 13 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
| 15 | 4, 14 | eqtr4d 2769 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴}) |
| 16 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 17 | prssi 4770 | . . . . 5 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) | |
| 18 | 12, 1, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
| 19 | prex 5373 | . . . . 5 ⊢ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ V | |
| 20 | 19 | elpw 4551 | . . . 4 ⊢ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
| 21 | 18, 20 | sylibr 234 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) |
| 22 | prct 32696 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) | |
| 23 | 12, 1, 22 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) |
| 24 | prnzg 4728 | . . . 4 ⊢ ((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) | |
| 25 | 12, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) |
| 26 | sigaclci 34145 | . . 3 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅)) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) | |
| 27 | 16, 21, 23, 25, 26 | syl22anc 838 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) |
| 28 | 15, 27 | eqeltrd 2831 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 {cpr 4575 ∪ cuni 4856 ∩ cint 4895 class class class wbr 5089 ran crn 5615 ωcom 7796 ≼ cdom 8867 sigAlgebracsiga 34121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-siga 34122 |
| This theorem is referenced by: inelsiga 34148 sigainb 34149 sigaldsys 34172 cldssbrsiga 34200 measxun2 34223 measssd 34228 measunl 34229 measiuns 34230 measiun 34231 meascnbl 34232 imambfm 34275 dya2iocbrsiga 34288 dya2icobrsiga 34289 sxbrsigalem2 34299 probdif 34433 |
| Copyright terms: Public domain | W3C validator |