| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difelsiga | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.) |
| Ref | Expression |
|---|---|
| difelsiga | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
| 2 | elssuni 4913 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) | |
| 3 | difin2 4276 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑆 → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
| 5 | isrnsigau 34158 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
| 6 | 5 | simprd 495 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
| 7 | 6 | simp2d 1143 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆) |
| 8 | difeq2 4095 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (∪ 𝑆 ∖ 𝑥) = (∪ 𝑆 ∖ 𝐵)) | |
| 9 | 8 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐵) ∈ 𝑆)) |
| 10 | 9 | rspccva 3600 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 11 | 7, 10 | sylan 580 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 13 | intprg 4957 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
| 14 | 12, 1, 13 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
| 15 | 4, 14 | eqtr4d 2773 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴}) |
| 16 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 17 | prssi 4797 | . . . . 5 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) | |
| 18 | 12, 1, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
| 19 | prex 5407 | . . . . 5 ⊢ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ V | |
| 20 | 19 | elpw 4579 | . . . 4 ⊢ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
| 21 | 18, 20 | sylibr 234 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) |
| 22 | prct 32692 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) | |
| 23 | 12, 1, 22 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) |
| 24 | prnzg 4754 | . . . 4 ⊢ ((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) | |
| 25 | 12, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) |
| 26 | sigaclci 34163 | . . 3 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅)) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) | |
| 27 | 16, 21, 23, 25, 26 | syl22anc 838 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) |
| 28 | 15, 27 | eqeltrd 2834 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {cpr 4603 ∪ cuni 4883 ∩ cint 4922 class class class wbr 5119 ran crn 5655 ωcom 7861 ≼ cdom 8957 sigAlgebracsiga 34139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-siga 34140 |
| This theorem is referenced by: inelsiga 34166 sigainb 34167 sigaldsys 34190 cldssbrsiga 34218 measxun2 34241 measssd 34246 measunl 34247 measiuns 34248 measiun 34249 meascnbl 34250 imambfm 34294 dya2iocbrsiga 34307 dya2icobrsiga 34308 sxbrsigalem2 34318 probdif 34452 |
| Copyright terms: Public domain | W3C validator |