Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelsiga Structured version   Visualization version   GIF version

Theorem difelsiga 30737
 Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.)
Assertion
Ref Expression
difelsiga ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)

Proof of Theorem difelsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1171 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → 𝐴𝑆)
2 elssuni 4691 . . . 4 (𝐴𝑆𝐴 𝑆)
3 difin2 4121 . . . 4 (𝐴 𝑆 → (𝐴𝐵) = (( 𝑆𝐵) ∩ 𝐴))
41, 2, 33syl 18 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) = (( 𝑆𝐵) ∩ 𝐴))
5 isrnsigau 30731 . . . . . . . 8 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
65simprd 491 . . . . . . 7 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
76simp2d 1177 . . . . . 6 (𝑆 ran sigAlgebra → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
8 difeq2 3951 . . . . . . . 8 (𝑥 = 𝐵 → ( 𝑆𝑥) = ( 𝑆𝐵))
98eleq1d 2891 . . . . . . 7 (𝑥 = 𝐵 → (( 𝑆𝑥) ∈ 𝑆 ↔ ( 𝑆𝐵) ∈ 𝑆))
109rspccva 3525 . . . . . 6 ((∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
117, 10sylan 575 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
12113adant2 1165 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
13 intprg 4733 . . . 4 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} = (( 𝑆𝐵) ∩ 𝐴))
1412, 1, 13syl2anc 579 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} = (( 𝑆𝐵) ∩ 𝐴))
154, 14eqtr4d 2864 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) = {( 𝑆𝐵), 𝐴})
16 simp1 1170 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → 𝑆 ran sigAlgebra)
17 prssi 4572 . . . . 5 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
1812, 1, 17syl2anc 579 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
19 prex 5132 . . . . 5 {( 𝑆𝐵), 𝐴} ∈ V
2019elpw 4386 . . . 4 ({( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
2118, 20sylibr 226 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆)
22 prct 30036 . . . 4 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} ≼ ω)
2312, 1, 22syl2anc 579 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ≼ ω)
24 prnzg 4532 . . . 4 (( 𝑆𝐵) ∈ 𝑆 → {( 𝑆𝐵), 𝐴} ≠ ∅)
2512, 24syl 17 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ≠ ∅)
26 sigaclci 30736 . . 3 (((𝑆 ran sigAlgebra ∧ {( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({( 𝑆𝐵), 𝐴} ≼ ω ∧ {( 𝑆𝐵), 𝐴} ≠ ∅)) → {( 𝑆𝐵), 𝐴} ∈ 𝑆)
2716, 21, 23, 25, 26syl22anc 872 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ∈ 𝑆)
2815, 27eqeltrd 2906 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∀wral 3117   ∖ cdif 3795   ∩ cin 3797   ⊆ wss 3798  ∅c0 4146  𝒫 cpw 4380  {cpr 4401  ∪ cuni 4660  ∩ cint 4699   class class class wbr 4875  ran crn 5347  ωcom 7331   ≼ cdom 8226  sigAlgebracsiga 30711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-ac2 9607 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-oi 8691  df-card 9085  df-acn 9088  df-ac 9259  df-cda 9312  df-siga 30712 This theorem is referenced by:  inelsiga  30739  sigainb  30740  sigaldsys  30763  cldssbrsiga  30791  measxun2  30814  measssd  30819  measunl  30820  measiuns  30821  measiun  30822  meascnbl  30823  imambfm  30865  dya2iocbrsiga  30878  dya2icobrsiga  30879  sxbrsigalem2  30889  probdif  31024
 Copyright terms: Public domain W3C validator