Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelsiga Structured version   Visualization version   GIF version

Theorem difelsiga 32772
Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.)
Assertion
Ref Expression
difelsiga ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)

Proof of Theorem difelsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → 𝐴𝑆)
2 elssuni 4903 . . . 4 (𝐴𝑆𝐴 𝑆)
3 difin2 4256 . . . 4 (𝐴 𝑆 → (𝐴𝐵) = (( 𝑆𝐵) ∩ 𝐴))
41, 2, 33syl 18 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) = (( 𝑆𝐵) ∩ 𝐴))
5 isrnsigau 32766 . . . . . . . 8 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
65simprd 497 . . . . . . 7 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
76simp2d 1144 . . . . . 6 (𝑆 ran sigAlgebra → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
8 difeq2 4081 . . . . . . . 8 (𝑥 = 𝐵 → ( 𝑆𝑥) = ( 𝑆𝐵))
98eleq1d 2823 . . . . . . 7 (𝑥 = 𝐵 → (( 𝑆𝑥) ∈ 𝑆 ↔ ( 𝑆𝐵) ∈ 𝑆))
109rspccva 3583 . . . . . 6 ((∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
117, 10sylan 581 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
12113adant2 1132 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → ( 𝑆𝐵) ∈ 𝑆)
13 intprg 4947 . . . 4 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} = (( 𝑆𝐵) ∩ 𝐴))
1412, 1, 13syl2anc 585 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} = (( 𝑆𝐵) ∩ 𝐴))
154, 14eqtr4d 2780 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) = {( 𝑆𝐵), 𝐴})
16 simp1 1137 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → 𝑆 ran sigAlgebra)
17 prssi 4786 . . . . 5 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
1812, 1, 17syl2anc 585 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
19 prex 5394 . . . . 5 {( 𝑆𝐵), 𝐴} ∈ V
2019elpw 4569 . . . 4 ({( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {( 𝑆𝐵), 𝐴} ⊆ 𝑆)
2118, 20sylibr 233 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆)
22 prct 31673 . . . 4 ((( 𝑆𝐵) ∈ 𝑆𝐴𝑆) → {( 𝑆𝐵), 𝐴} ≼ ω)
2312, 1, 22syl2anc 585 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ≼ ω)
24 prnzg 4744 . . . 4 (( 𝑆𝐵) ∈ 𝑆 → {( 𝑆𝐵), 𝐴} ≠ ∅)
2512, 24syl 17 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ≠ ∅)
26 sigaclci 32771 . . 3 (((𝑆 ran sigAlgebra ∧ {( 𝑆𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({( 𝑆𝐵), 𝐴} ≼ ω ∧ {( 𝑆𝐵), 𝐴} ≠ ∅)) → {( 𝑆𝐵), 𝐴} ∈ 𝑆)
2716, 21, 23, 25, 26syl22anc 838 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {( 𝑆𝐵), 𝐴} ∈ 𝑆)
2815, 27eqeltrd 2838 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  wne 2944  wral 3065  cdif 3912  cin 3914  wss 3915  c0 4287  𝒫 cpw 4565  {cpr 4593   cuni 4870   cint 4912   class class class wbr 5110  ran crn 5639  ωcom 7807  cdom 8888  sigAlgebracsiga 32747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-ac2 10406
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-oi 9453  df-dju 9844  df-card 9882  df-acn 9885  df-ac 10059  df-siga 32748
This theorem is referenced by:  inelsiga  32774  sigainb  32775  sigaldsys  32798  cldssbrsiga  32826  measxun2  32849  measssd  32854  measunl  32855  measiuns  32856  measiun  32857  meascnbl  32858  imambfm  32902  dya2iocbrsiga  32915  dya2icobrsiga  32916  sxbrsigalem2  32926  probdif  33060
  Copyright terms: Public domain W3C validator