![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difelsiga | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.) |
Ref | Expression |
---|---|
difelsiga | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
2 | elssuni 4961 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) | |
3 | difin2 4320 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑆 → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
5 | isrnsigau 34091 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
6 | 5 | simprd 495 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
7 | 6 | simp2d 1143 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆) |
8 | difeq2 4143 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (∪ 𝑆 ∖ 𝑥) = (∪ 𝑆 ∖ 𝐵)) | |
9 | 8 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐵) ∈ 𝑆)) |
10 | 9 | rspccva 3634 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
11 | 7, 10 | sylan 579 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
13 | intprg 5005 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
14 | 12, 1, 13 | syl2anc 583 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
15 | 4, 14 | eqtr4d 2783 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴}) |
16 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
17 | prssi 4846 | . . . . 5 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) | |
18 | 12, 1, 17 | syl2anc 583 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
19 | prex 5452 | . . . . 5 ⊢ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ V | |
20 | 19 | elpw 4626 | . . . 4 ⊢ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
21 | 18, 20 | sylibr 234 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) |
22 | prct 32728 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) | |
23 | 12, 1, 22 | syl2anc 583 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) |
24 | prnzg 4803 | . . . 4 ⊢ ((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) | |
25 | 12, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) |
26 | sigaclci 34096 | . . 3 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅)) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) | |
27 | 16, 21, 23, 25, 26 | syl22anc 838 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) |
28 | 15, 27 | eqeltrd 2844 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 ∩ cint 4970 class class class wbr 5166 ran crn 5701 ωcom 7903 ≼ cdom 9001 sigAlgebracsiga 34072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-siga 34073 |
This theorem is referenced by: inelsiga 34099 sigainb 34100 sigaldsys 34123 cldssbrsiga 34151 measxun2 34174 measssd 34179 measunl 34180 measiuns 34181 measiun 34182 meascnbl 34183 imambfm 34227 dya2iocbrsiga 34240 dya2icobrsiga 34241 sxbrsigalem2 34251 probdif 34385 |
Copyright terms: Public domain | W3C validator |