| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difelsiga | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016.) |
| Ref | Expression |
|---|---|
| difelsiga | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
| 2 | elssuni 4901 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) | |
| 3 | difin2 4264 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑆 → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
| 5 | isrnsigau 34117 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
| 6 | 5 | simprd 495 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
| 7 | 6 | simp2d 1143 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆) |
| 8 | difeq2 4083 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (∪ 𝑆 ∖ 𝑥) = (∪ 𝑆 ∖ 𝐵)) | |
| 9 | 8 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐵) ∈ 𝑆)) |
| 10 | 9 | rspccva 3587 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 11 | 7, 10 | sylan 580 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐵) ∈ 𝑆) |
| 13 | intprg 4945 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) | |
| 14 | 12, 1, 13 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} = ((∪ 𝑆 ∖ 𝐵) ∩ 𝐴)) |
| 15 | 4, 14 | eqtr4d 2767 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) = ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴}) |
| 16 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 17 | prssi 4785 | . . . . 5 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) | |
| 18 | 12, 1, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
| 19 | prex 5392 | . . . . 5 ⊢ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ V | |
| 20 | 19 | elpw 4567 | . . . 4 ⊢ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆 ↔ {(∪ 𝑆 ∖ 𝐵), 𝐴} ⊆ 𝑆) |
| 21 | 18, 20 | sylibr 234 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) |
| 22 | prct 32638 | . . . 4 ⊢ (((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) | |
| 23 | 12, 1, 22 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω) |
| 24 | prnzg 4742 | . . . 4 ⊢ ((∪ 𝑆 ∖ 𝐵) ∈ 𝑆 → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) | |
| 25 | 12, 24 | syl 17 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅) |
| 26 | sigaclci 34122 | . . 3 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝒫 𝑆) ∧ ({(∪ 𝑆 ∖ 𝐵), 𝐴} ≼ ω ∧ {(∪ 𝑆 ∖ 𝐵), 𝐴} ≠ ∅)) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) | |
| 27 | 16, 21, 23, 25, 26 | syl22anc 838 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {(∪ 𝑆 ∖ 𝐵), 𝐴} ∈ 𝑆) |
| 28 | 15, 27 | eqeltrd 2828 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {cpr 4591 ∪ cuni 4871 ∩ cint 4910 class class class wbr 5107 ran crn 5639 ωcom 7842 ≼ cdom 8916 sigAlgebracsiga 34098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-siga 34099 |
| This theorem is referenced by: inelsiga 34125 sigainb 34126 sigaldsys 34149 cldssbrsiga 34177 measxun2 34200 measssd 34205 measunl 34206 measiuns 34207 measiun 34208 meascnbl 34209 imambfm 34253 dya2iocbrsiga 34266 dya2icobrsiga 34267 sxbrsigalem2 34277 probdif 34411 |
| Copyright terms: Public domain | W3C validator |