![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difelcarsg2 | Structured version Visualization version GIF version |
Description: The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
difelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) |
inelcarsg.1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) |
inelcarsg.2 | ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
difelcarsg2 | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
3 | difelcarsg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) | |
4 | 1, 2, 3 | elcarsgss 33763 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
5 | difin2 4283 | . . 3 ⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∖ 𝐵) = ((𝑂 ∖ 𝐵) ∩ 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) = ((𝑂 ∖ 𝐵) ∩ 𝐴)) |
7 | inelcarsg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) | |
8 | 1, 2, 7 | difelcarsg 33764 | . . 3 ⊢ (𝜑 → (𝑂 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
9 | inelcarsg.1 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) | |
10 | 1, 2, 8, 9, 3 | inelcarsg 33765 | . 2 ⊢ (𝜑 → ((𝑂 ∖ 𝐵) ∩ 𝐴) ∈ (toCaraSiga‘𝑀)) |
11 | 6, 10 | eqeltrd 2825 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 ∪ cun 3938 ∩ cin 3939 ⊆ wss 3940 𝒫 cpw 4594 class class class wbr 5138 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 0cc0 11105 +∞cpnf 11241 ≤ cle 11245 +𝑒 cxad 13086 [,]cicc 13323 toCaraSigaccarsg 33755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-xadd 13089 df-icc 13327 df-carsg 33756 |
This theorem is referenced by: carsgclctunlem3 33774 |
Copyright terms: Public domain | W3C validator |