| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difelcarsg2 | Structured version Visualization version GIF version | ||
| Description: The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| difelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) |
| inelcarsg.1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) |
| inelcarsg.2 | ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) |
| Ref | Expression |
|---|---|
| difelcarsg2 | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 3 | difelcarsg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) | |
| 4 | 1, 2, 3 | elcarsgss 34295 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
| 5 | difin2 4260 | . . 3 ⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∖ 𝐵) = ((𝑂 ∖ 𝐵) ∩ 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) = ((𝑂 ∖ 𝐵) ∩ 𝐴)) |
| 7 | inelcarsg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (toCaraSiga‘𝑀)) | |
| 8 | 1, 2, 7 | difelcarsg 34296 | . . 3 ⊢ (𝜑 → (𝑂 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
| 9 | inelcarsg.1 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑂 ∧ 𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎 ∪ 𝑏)) ≤ ((𝑀‘𝑎) +𝑒 (𝑀‘𝑏))) | |
| 10 | 1, 2, 8, 9, 3 | inelcarsg 34297 | . 2 ⊢ (𝜑 → ((𝑂 ∖ 𝐵) ∩ 𝐴) ∈ (toCaraSiga‘𝑀)) |
| 11 | 6, 10 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ (toCaraSiga‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 class class class wbr 5102 ⟶wf 6496 ‘cfv 6500 (class class class)co 7370 0cc0 11047 +∞cpnf 11184 ≤ cle 11188 +𝑒 cxad 13049 [,]cicc 13288 toCaraSigaccarsg 34287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7373 df-oprab 7374 df-mpo 7375 df-1st 7948 df-2nd 7949 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-xadd 13052 df-icc 13292 df-carsg 34288 |
| This theorem is referenced by: carsgclctunlem3 34306 |
| Copyright terms: Public domain | W3C validator |