![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difelcarsg2 | Structured version Visualization version GIF version |
Description: The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | β’ (π β π β π) |
carsgval.2 | β’ (π β π:π« πβΆ(0[,]+β)) |
difelcarsg.1 | β’ (π β π΄ β (toCaraSigaβπ)) |
inelcarsg.1 | β’ ((π β§ π β π« π β§ π β π« π) β (πβ(π βͺ π)) β€ ((πβπ) +π (πβπ))) |
inelcarsg.2 | β’ (π β π΅ β (toCaraSigaβπ)) |
Ref | Expression |
---|---|
difelcarsg2 | β’ (π β (π΄ β π΅) β (toCaraSigaβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgval.1 | . . . 4 β’ (π β π β π) | |
2 | carsgval.2 | . . . 4 β’ (π β π:π« πβΆ(0[,]+β)) | |
3 | difelcarsg.1 | . . . 4 β’ (π β π΄ β (toCaraSigaβπ)) | |
4 | 1, 2, 3 | elcarsgss 33603 | . . 3 β’ (π β π΄ β π) |
5 | difin2 4292 | . . 3 β’ (π΄ β π β (π΄ β π΅) = ((π β π΅) β© π΄)) | |
6 | 4, 5 | syl 17 | . 2 β’ (π β (π΄ β π΅) = ((π β π΅) β© π΄)) |
7 | inelcarsg.2 | . . . 4 β’ (π β π΅ β (toCaraSigaβπ)) | |
8 | 1, 2, 7 | difelcarsg 33604 | . . 3 β’ (π β (π β π΅) β (toCaraSigaβπ)) |
9 | inelcarsg.1 | . . 3 β’ ((π β§ π β π« π β§ π β π« π) β (πβ(π βͺ π)) β€ ((πβπ) +π (πβπ))) | |
10 | 1, 2, 8, 9, 3 | inelcarsg 33605 | . 2 β’ (π β ((π β π΅) β© π΄) β (toCaraSigaβπ)) |
11 | 6, 10 | eqeltrd 2832 | 1 β’ (π β (π΄ β π΅) β (toCaraSigaβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 β cdif 3946 βͺ cun 3947 β© cin 3948 β wss 3949 π« cpw 4603 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7412 0cc0 11113 +βcpnf 11250 β€ cle 11254 +π cxad 13095 [,]cicc 13332 toCaraSigaccarsg 33595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-xadd 13098 df-icc 13336 df-carsg 33596 |
This theorem is referenced by: carsgclctunlem3 33614 |
Copyright terms: Public domain | W3C validator |