Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumdifsndf Structured version   Visualization version   GIF version

Theorem gsumdifsndf 45263
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.)
Hypotheses
Ref Expression
gsumdifsndf.k 𝑘𝑌
gsumdifsndf.n 𝑘𝜑
gsumdifsndf.b 𝐵 = (Base‘𝐺)
gsumdifsndf.p + = (+g𝐺)
gsumdifsndf.g (𝜑𝐺 ∈ CMnd)
gsumdifsndf.a (𝜑𝐴𝑊)
gsumdifsndf.f (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
gsumdifsndf.e ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumdifsndf.m (𝜑𝑀𝐴)
gsumdifsndf.y (𝜑𝑌𝐵)
gsumdifsndf.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumdifsndf (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   + (𝑘)   𝑊(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem gsumdifsndf
StepHypRef Expression
1 gsumdifsndf.n . . 3 𝑘𝜑
2 gsumdifsndf.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2738 . . 3 (0g𝐺) = (0g𝐺)
4 gsumdifsndf.p . . 3 + = (+g𝐺)
5 gsumdifsndf.g . . 3 (𝜑𝐺 ∈ CMnd)
6 gsumdifsndf.a . . 3 (𝜑𝐴𝑊)
7 gsumdifsndf.e . . 3 ((𝜑𝑘𝐴) → 𝑋𝐵)
8 gsumdifsndf.f . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
9 gsumdifsndf.m . . . . . 6 (𝜑𝑀𝐴)
109snssd 4739 . . . . 5 (𝜑 → {𝑀} ⊆ 𝐴)
11 difin2 4222 . . . . 5 ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
1210, 11syl 17 . . . 4 (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
13 difid 4301 . . . 4 ({𝑀} ∖ {𝑀}) = ∅
1412, 13eqtr3di 2794 . . 3 (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅)
15 difsnid 4740 . . . . 5 (𝑀𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
169, 15syl 17 . . . 4 (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1716eqcomd 2744 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀}))
181, 2, 3, 4, 5, 6, 7, 8, 14, 17gsumsplit2f 45262 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
19 cmnmnd 19317 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
205, 19syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
21 gsumdifsndf.y . . . 4 (𝜑𝑌𝐵)
22 gsumdifsndf.s . . . 4 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
23 gsumdifsndf.k . . . 4 𝑘𝑌
242, 20, 9, 21, 22, 1, 23gsumsnfd 19467 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2524oveq2d 7271 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
2618, 25eqtrd 2778 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator