Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumdifsndf Structured version   Visualization version   GIF version

Theorem gsumdifsndf 46577
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.)
Hypotheses
Ref Expression
gsumdifsndf.k 𝑘𝑌
gsumdifsndf.n 𝑘𝜑
gsumdifsndf.b 𝐵 = (Base‘𝐺)
gsumdifsndf.p + = (+g𝐺)
gsumdifsndf.g (𝜑𝐺 ∈ CMnd)
gsumdifsndf.a (𝜑𝐴𝑊)
gsumdifsndf.f (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
gsumdifsndf.e ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumdifsndf.m (𝜑𝑀𝐴)
gsumdifsndf.y (𝜑𝑌𝐵)
gsumdifsndf.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumdifsndf (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   + (𝑘)   𝑊(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem gsumdifsndf
StepHypRef Expression
1 gsumdifsndf.n . . 3 𝑘𝜑
2 gsumdifsndf.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2732 . . 3 (0g𝐺) = (0g𝐺)
4 gsumdifsndf.p . . 3 + = (+g𝐺)
5 gsumdifsndf.g . . 3 (𝜑𝐺 ∈ CMnd)
6 gsumdifsndf.a . . 3 (𝜑𝐴𝑊)
7 gsumdifsndf.e . . 3 ((𝜑𝑘𝐴) → 𝑋𝐵)
8 gsumdifsndf.f . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
9 gsumdifsndf.m . . . . . 6 (𝜑𝑀𝐴)
109snssd 4811 . . . . 5 (𝜑 → {𝑀} ⊆ 𝐴)
11 difin2 4290 . . . . 5 ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
1210, 11syl 17 . . . 4 (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
13 difid 4369 . . . 4 ({𝑀} ∖ {𝑀}) = ∅
1412, 13eqtr3di 2787 . . 3 (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅)
15 difsnid 4812 . . . . 5 (𝑀𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
169, 15syl 17 . . . 4 (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1716eqcomd 2738 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀}))
181, 2, 3, 4, 5, 6, 7, 8, 14, 17gsumsplit2f 46576 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
19 cmnmnd 19659 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
205, 19syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
21 gsumdifsndf.y . . . 4 (𝜑𝑌𝐵)
22 gsumdifsndf.s . . . 4 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
23 gsumdifsndf.k . . . 4 𝑘𝑌
242, 20, 9, 21, 22, 1, 23gsumsnfd 19813 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2524oveq2d 7421 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
2618, 25eqtrd 2772 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2883  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321  {csn 4627   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405   finSupp cfsupp 9357  Basecbs 17140  +gcplusg 17193  0gc0g 17381   Σg cgsu 17382  Mndcmnd 18621  CMndccmn 19642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator