![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumdifsndf | Structured version Visualization version GIF version |
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.) |
Ref | Expression |
---|---|
gsumdifsndf.k | ⊢ Ⅎ𝑘𝑌 |
gsumdifsndf.n | ⊢ Ⅎ𝑘𝜑 |
gsumdifsndf.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumdifsndf.p | ⊢ + = (+g‘𝐺) |
gsumdifsndf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumdifsndf.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
gsumdifsndf.f | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) |
gsumdifsndf.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumdifsndf.m | ⊢ (𝜑 → 𝑀 ∈ 𝐴) |
gsumdifsndf.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumdifsndf.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumdifsndf | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumdifsndf.n | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | gsumdifsndf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2732 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | gsumdifsndf.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | gsumdifsndf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
6 | gsumdifsndf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
7 | gsumdifsndf.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
8 | gsumdifsndf.f | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) | |
9 | gsumdifsndf.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐴) | |
10 | 9 | snssd 4811 | . . . . 5 ⊢ (𝜑 → {𝑀} ⊆ 𝐴) |
11 | difin2 4290 | . . . . 5 ⊢ ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) |
13 | difid 4369 | . . . 4 ⊢ ({𝑀} ∖ {𝑀}) = ∅ | |
14 | 12, 13 | eqtr3di 2787 | . . 3 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅) |
15 | difsnid 4812 | . . . . 5 ⊢ (𝑀 ∈ 𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) | |
16 | 9, 15 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) |
17 | 16 | eqcomd 2738 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀})) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 17 | gsumsplit2f 46576 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
19 | cmnmnd 19659 | . . . . 5 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
21 | gsumdifsndf.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
22 | gsumdifsndf.s | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
23 | gsumdifsndf.k | . . . 4 ⊢ Ⅎ𝑘𝑌 | |
24 | 2, 20, 9, 21, 22, 1, 23 | gsumsnfd 19813 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
25 | 24 | oveq2d 7421 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
26 | 18, 25 | eqtrd 2772 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {csn 4627 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7405 finSupp cfsupp 9357 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Σg cgsu 17382 Mndcmnd 18621 CMndccmn 19642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-gsum 17384 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |