MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubdrg Structured version   Visualization version   GIF version

Theorem issubdrg 20381
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubdrg.s 𝑆 = (𝑅 β†Ύs 𝐴)
issubdrg.z 0 = (0gβ€˜π‘…)
issubdrg.i 𝐼 = (invrβ€˜π‘…)
Assertion
Ref Expression
issubdrg ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ (𝑆 ∈ DivRing ↔ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑅   π‘₯,𝑆   π‘₯, 0
Allowed substitution hint:   𝐼(π‘₯)

Proof of Theorem issubdrg
StepHypRef Expression
1 simpllr 774 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ 𝐴 ∈ (SubRingβ€˜π‘…))
2 issubdrg.s . . . . . . 7 𝑆 = (𝑅 β†Ύs 𝐴)
32subrgring 20358 . . . . . 6 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 ∈ Ring)
41, 3syl 17 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ 𝑆 ∈ Ring)
5 simpr 485 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ π‘₯ ∈ (𝐴 βˆ– { 0 }))
6 eldifsn 4789 . . . . . . . . 9 (π‘₯ ∈ (𝐴 βˆ– { 0 }) ↔ (π‘₯ ∈ 𝐴 ∧ π‘₯ β‰  0 ))
75, 6sylib 217 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ (π‘₯ ∈ 𝐴 ∧ π‘₯ β‰  0 ))
87simpld 495 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ π‘₯ ∈ 𝐴)
92subrgbas 20364 . . . . . . . 8 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜π‘†))
101, 9syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ 𝐴 = (Baseβ€˜π‘†))
118, 10eleqtrd 2835 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ π‘₯ ∈ (Baseβ€˜π‘†))
127simprd 496 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ π‘₯ β‰  0 )
13 issubdrg.z . . . . . . . . 9 0 = (0gβ€˜π‘…)
142, 13subrg0 20362 . . . . . . . 8 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 0 = (0gβ€˜π‘†))
151, 14syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ 0 = (0gβ€˜π‘†))
1612, 15neeqtrd 3010 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ π‘₯ β‰  (0gβ€˜π‘†))
17 eqid 2732 . . . . . . . 8 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
18 eqid 2732 . . . . . . . 8 (Unitβ€˜π‘†) = (Unitβ€˜π‘†)
19 eqid 2732 . . . . . . . 8 (0gβ€˜π‘†) = (0gβ€˜π‘†)
2017, 18, 19drngunit 20312 . . . . . . 7 (𝑆 ∈ DivRing β†’ (π‘₯ ∈ (Unitβ€˜π‘†) ↔ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ π‘₯ β‰  (0gβ€˜π‘†))))
2120ad2antlr 725 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ (π‘₯ ∈ (Unitβ€˜π‘†) ↔ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ π‘₯ β‰  (0gβ€˜π‘†))))
2211, 16, 21mpbir2and 711 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ π‘₯ ∈ (Unitβ€˜π‘†))
23 eqid 2732 . . . . . 6 (invrβ€˜π‘†) = (invrβ€˜π‘†)
2418, 23, 17ringinvcl 20198 . . . . 5 ((𝑆 ∈ Ring ∧ π‘₯ ∈ (Unitβ€˜π‘†)) β†’ ((invrβ€˜π‘†)β€˜π‘₯) ∈ (Baseβ€˜π‘†))
254, 22, 24syl2anc 584 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ ((invrβ€˜π‘†)β€˜π‘₯) ∈ (Baseβ€˜π‘†))
26 issubdrg.i . . . . . 6 𝐼 = (invrβ€˜π‘…)
272, 26, 18, 23subrginv 20371 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ (Unitβ€˜π‘†)) β†’ (πΌβ€˜π‘₯) = ((invrβ€˜π‘†)β€˜π‘₯))
281, 22, 27syl2anc 584 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ (πΌβ€˜π‘₯) = ((invrβ€˜π‘†)β€˜π‘₯))
2925, 28, 103eltr4d 2848 . . 3 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ (πΌβ€˜π‘₯) ∈ 𝐴)
3029ralrimiva 3146 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ 𝑆 ∈ DivRing) β†’ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴)
313ad2antlr 725 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ 𝑆 ∈ Ring)
32 eqid 2732 . . . . . . . . . 10 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
332, 32, 18subrguss 20370 . . . . . . . . 9 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (Unitβ€˜π‘†) βŠ† (Unitβ€˜π‘…))
3433ad2antlr 725 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘†) βŠ† (Unitβ€˜π‘…))
35 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
3635, 32, 13isdrng 20311 . . . . . . . . . 10 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unitβ€˜π‘…) = ((Baseβ€˜π‘…) βˆ– { 0 })))
3736simprbi 497 . . . . . . . . 9 (𝑅 ∈ DivRing β†’ (Unitβ€˜π‘…) = ((Baseβ€˜π‘…) βˆ– { 0 }))
3837ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘…) = ((Baseβ€˜π‘…) βˆ– { 0 }))
3934, 38sseqtrd 4021 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘†) βŠ† ((Baseβ€˜π‘…) βˆ– { 0 }))
4017, 18unitss 20182 . . . . . . . 8 (Unitβ€˜π‘†) βŠ† (Baseβ€˜π‘†)
419ad2antlr 725 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ 𝐴 = (Baseβ€˜π‘†))
4240, 41sseqtrrid 4034 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘†) βŠ† 𝐴)
4339, 42ssind 4231 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘†) βŠ† (((Baseβ€˜π‘…) βˆ– { 0 }) ∩ 𝐴))
4435subrgss 20356 . . . . . . . 8 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 βŠ† (Baseβ€˜π‘…))
4544ad2antlr 725 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ 𝐴 βŠ† (Baseβ€˜π‘…))
46 difin2 4290 . . . . . . 7 (𝐴 βŠ† (Baseβ€˜π‘…) β†’ (𝐴 βˆ– { 0 }) = (((Baseβ€˜π‘…) βˆ– { 0 }) ∩ 𝐴))
4745, 46syl 17 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (𝐴 βˆ– { 0 }) = (((Baseβ€˜π‘…) βˆ– { 0 }) ∩ 𝐴))
4843, 47sseqtrrd 4022 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘†) βŠ† (𝐴 βˆ– { 0 }))
4944ad2antlr 725 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ 𝐴 βŠ† (Baseβ€˜π‘…))
50 simprl 769 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ π‘₯ ∈ (𝐴 βˆ– { 0 }))
5150, 6sylib 217 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ (π‘₯ ∈ 𝐴 ∧ π‘₯ β‰  0 ))
5251simpld 495 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ π‘₯ ∈ 𝐴)
5349, 52sseldd 3982 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
5451simprd 496 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ π‘₯ β‰  0 )
5535, 32, 13drngunit 20312 . . . . . . . . . . . 12 (𝑅 ∈ DivRing β†’ (π‘₯ ∈ (Unitβ€˜π‘…) ↔ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ π‘₯ β‰  0 )))
5655ad2antrr 724 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ (π‘₯ ∈ (Unitβ€˜π‘…) ↔ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ π‘₯ β‰  0 )))
5753, 54, 56mpbir2and 711 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ π‘₯ ∈ (Unitβ€˜π‘…))
58 simprr 771 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ (πΌβ€˜π‘₯) ∈ 𝐴)
592, 32, 18, 26subrgunit 20373 . . . . . . . . . . 11 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (π‘₯ ∈ (Unitβ€˜π‘†) ↔ (π‘₯ ∈ (Unitβ€˜π‘…) ∧ π‘₯ ∈ 𝐴 ∧ (πΌβ€˜π‘₯) ∈ 𝐴)))
6059ad2antlr 725 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ (π‘₯ ∈ (Unitβ€˜π‘†) ↔ (π‘₯ ∈ (Unitβ€˜π‘…) ∧ π‘₯ ∈ 𝐴 ∧ (πΌβ€˜π‘₯) ∈ 𝐴)))
6157, 52, 58, 60mpbir3and 1342 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ (𝐴 βˆ– { 0 }) ∧ (πΌβ€˜π‘₯) ∈ 𝐴)) β†’ π‘₯ ∈ (Unitβ€˜π‘†))
6261expr 457 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ (𝐴 βˆ– { 0 })) β†’ ((πΌβ€˜π‘₯) ∈ 𝐴 β†’ π‘₯ ∈ (Unitβ€˜π‘†)))
6362ralimdva 3167 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ (βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴 β†’ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })π‘₯ ∈ (Unitβ€˜π‘†)))
6463imp 407 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })π‘₯ ∈ (Unitβ€˜π‘†))
65 dfss3 3969 . . . . . 6 ((𝐴 βˆ– { 0 }) βŠ† (Unitβ€˜π‘†) ↔ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })π‘₯ ∈ (Unitβ€˜π‘†))
6664, 65sylibr 233 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (𝐴 βˆ– { 0 }) βŠ† (Unitβ€˜π‘†))
6748, 66eqssd 3998 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘†) = (𝐴 βˆ– { 0 }))
6814ad2antlr 725 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ 0 = (0gβ€˜π‘†))
6968sneqd 4639 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ { 0 } = {(0gβ€˜π‘†)})
7041, 69difeq12d 4122 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (𝐴 βˆ– { 0 }) = ((Baseβ€˜π‘†) βˆ– {(0gβ€˜π‘†)}))
7167, 70eqtrd 2772 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ (Unitβ€˜π‘†) = ((Baseβ€˜π‘†) βˆ– {(0gβ€˜π‘†)}))
7217, 18, 19isdrng 20311 . . 3 (𝑆 ∈ DivRing ↔ (𝑆 ∈ Ring ∧ (Unitβ€˜π‘†) = ((Baseβ€˜π‘†) βˆ– {(0gβ€˜π‘†)})))
7331, 71, 72sylanbrc 583 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) ∧ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴) β†’ 𝑆 ∈ DivRing)
7430, 73impbida 799 1 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ (𝑆 ∈ DivRing ↔ βˆ€π‘₯ ∈ (𝐴 βˆ– { 0 })(πΌβ€˜π‘₯) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  {csn 4627  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140   β†Ύs cress 17169  0gc0g 17381  Ringcrg 20049  Unitcui 20161  invrcinvr 20193  DivRingcdr 20307  SubRingcsubrg 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-subg 18997  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-drng 20309  df-subrg 20353
This theorem is referenced by:  issdrg2  20403  cnsubdrglem  20988  extdg1id  32730
  Copyright terms: Public domain W3C validator