MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubdrg Structured version   Visualization version   GIF version

Theorem issubdrg 19563
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubdrg.s 𝑆 = (𝑅s 𝐴)
issubdrg.z 0 = (0g𝑅)
issubdrg.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
issubdrg ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆   𝑥, 0
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem issubdrg
StepHypRef Expression
1 simpllr 774 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 ∈ (SubRing‘𝑅))
2 issubdrg.s . . . . . . 7 𝑆 = (𝑅s 𝐴)
32subrgring 19541 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
41, 3syl 17 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑆 ∈ Ring)
5 simpr 487 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (𝐴 ∖ { 0 }))
6 eldifsn 4722 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ { 0 }) ↔ (𝑥𝐴𝑥0 ))
75, 6sylib 220 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥𝐴𝑥0 ))
87simpld 497 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥𝐴)
92subrgbas 19547 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
101, 9syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 = (Base‘𝑆))
118, 10eleqtrd 2918 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Base‘𝑆))
127simprd 498 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥0 )
13 issubdrg.z . . . . . . . . 9 0 = (0g𝑅)
142, 13subrg0 19545 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g𝑆))
151, 14syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 0 = (0g𝑆))
1612, 15neeqtrd 3088 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ≠ (0g𝑆))
17 eqid 2824 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 eqid 2824 . . . . . . . 8 (Unit‘𝑆) = (Unit‘𝑆)
19 eqid 2824 . . . . . . . 8 (0g𝑆) = (0g𝑆)
2017, 18, 19drngunit 19510 . . . . . . 7 (𝑆 ∈ DivRing → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2120ad2antlr 725 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2211, 16, 21mpbir2and 711 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑆))
23 eqid 2824 . . . . . 6 (invr𝑆) = (invr𝑆)
2418, 23, 17ringinvcl 19429 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝑆)) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
254, 22, 24syl2anc 586 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
26 issubdrg.i . . . . . 6 𝐼 = (invr𝑅)
272, 26, 18, 23subrginv 19554 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Unit‘𝑆)) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
281, 22, 27syl2anc 586 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
2925, 28, 103eltr4d 2931 . . 3 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) ∈ 𝐴)
3029ralrimiva 3185 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) → ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴)
313ad2antlr 725 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ Ring)
32 eqid 2824 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
332, 32, 18subrguss 19553 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
3433ad2antlr 725 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
35 eqid 2824 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
3635, 32, 13isdrng 19509 . . . . . . . . . 10 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 })))
3736simprbi 499 . . . . . . . . 9 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3837ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3934, 38sseqtrd 4010 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ ((Base‘𝑅) ∖ { 0 }))
4017, 18unitss 19413 . . . . . . . 8 (Unit‘𝑆) ⊆ (Base‘𝑆)
419ad2antlr 725 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 = (Base‘𝑆))
4240, 41sseqtrrid 4023 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ 𝐴)
4339, 42ssind 4212 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4435subrgss 19539 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
4544ad2antlr 725 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 ⊆ (Base‘𝑅))
46 difin2 4269 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4745, 46syl 17 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4843, 47sseqtrrd 4011 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (𝐴 ∖ { 0 }))
4944ad2antlr 725 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝐴 ⊆ (Base‘𝑅))
50 simprl 769 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (𝐴 ∖ { 0 }))
5150, 6sylib 220 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥𝐴𝑥0 ))
5251simpld 497 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥𝐴)
5349, 52sseldd 3971 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Base‘𝑅))
5451simprd 498 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥0 )
5535, 32, 13drngunit 19510 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5655ad2antrr 724 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5753, 54, 56mpbir2and 711 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑅))
58 simprr 771 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝐼𝑥) ∈ 𝐴)
592, 32, 18, 26subrgunit 19556 . . . . . . . . . . 11 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6059ad2antlr 725 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6157, 52, 58, 60mpbir3and 1338 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑆))
6261expr 459 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((𝐼𝑥) ∈ 𝐴𝑥 ∈ (Unit‘𝑆)))
6362ralimdva 3180 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆)))
6463imp 409 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
65 dfss3 3959 . . . . . 6 ((𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆) ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
6664, 65sylibr 236 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆))
6748, 66eqssd 3987 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = (𝐴 ∖ { 0 }))
6814ad2antlr 725 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 0 = (0g𝑆))
6968sneqd 4582 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → { 0 } = {(0g𝑆)})
7041, 69difeq12d 4103 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7167, 70eqtrd 2859 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7217, 18, 19isdrng 19509 . . 3 (𝑆 ∈ DivRing ↔ (𝑆 ∈ Ring ∧ (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)})))
7331, 71, 72sylanbrc 585 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ DivRing)
7430, 73impbida 799 1 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  cdif 3936  cin 3938  wss 3939  {csn 4570  cfv 6358  (class class class)co 7159  Basecbs 16486  s cress 16487  0gc0g 16716  Ringcrg 19300  Unitcui 19392  invrcinvr 19424  DivRingcdr 19505  SubRingcsubrg 19534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-subg 18279  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-drng 19507  df-subrg 19536
This theorem is referenced by:  issdrg2  19580  cnsubdrglem  20599  extdg1id  31057
  Copyright terms: Public domain W3C validator