MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubdrg Structured version   Visualization version   GIF version

Theorem issubdrg 20745
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubdrg.s 𝑆 = (𝑅s 𝐴)
issubdrg.z 0 = (0g𝑅)
issubdrg.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
issubdrg ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆   𝑥, 0
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem issubdrg
StepHypRef Expression
1 simpllr 775 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 ∈ (SubRing‘𝑅))
2 issubdrg.s . . . . . . 7 𝑆 = (𝑅s 𝐴)
32subrgring 20539 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
41, 3syl 17 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑆 ∈ Ring)
5 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (𝐴 ∖ { 0 }))
6 eldifsn 4767 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ { 0 }) ↔ (𝑥𝐴𝑥0 ))
75, 6sylib 218 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥𝐴𝑥0 ))
87simpld 494 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥𝐴)
92subrgbas 20546 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
101, 9syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 = (Base‘𝑆))
118, 10eleqtrd 2837 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Base‘𝑆))
127simprd 495 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥0 )
13 issubdrg.z . . . . . . . . 9 0 = (0g𝑅)
142, 13subrg0 20544 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g𝑆))
151, 14syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 0 = (0g𝑆))
1612, 15neeqtrd 3002 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ≠ (0g𝑆))
17 eqid 2736 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 eqid 2736 . . . . . . . 8 (Unit‘𝑆) = (Unit‘𝑆)
19 eqid 2736 . . . . . . . 8 (0g𝑆) = (0g𝑆)
2017, 18, 19drngunit 20699 . . . . . . 7 (𝑆 ∈ DivRing → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2120ad2antlr 727 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2211, 16, 21mpbir2and 713 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑆))
23 eqid 2736 . . . . . 6 (invr𝑆) = (invr𝑆)
2418, 23, 17ringinvcl 20357 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝑆)) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
254, 22, 24syl2anc 584 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
26 issubdrg.i . . . . . 6 𝐼 = (invr𝑅)
272, 26, 18, 23subrginv 20553 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Unit‘𝑆)) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
281, 22, 27syl2anc 584 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
2925, 28, 103eltr4d 2850 . . 3 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) ∈ 𝐴)
3029ralrimiva 3133 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) → ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴)
313ad2antlr 727 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ Ring)
32 eqid 2736 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
332, 32, 18subrguss 20552 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
3433ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
35 eqid 2736 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
3635, 32, 13isdrng 20698 . . . . . . . . . 10 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 })))
3736simprbi 496 . . . . . . . . 9 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3837ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3934, 38sseqtrd 4000 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ ((Base‘𝑅) ∖ { 0 }))
4017, 18unitss 20341 . . . . . . . 8 (Unit‘𝑆) ⊆ (Base‘𝑆)
419ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 = (Base‘𝑆))
4240, 41sseqtrrid 4007 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ 𝐴)
4339, 42ssind 4221 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4435subrgss 20537 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
4544ad2antlr 727 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 ⊆ (Base‘𝑅))
46 difin2 4281 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4745, 46syl 17 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4843, 47sseqtrrd 4001 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (𝐴 ∖ { 0 }))
4944ad2antlr 727 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝐴 ⊆ (Base‘𝑅))
50 simprl 770 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (𝐴 ∖ { 0 }))
5150, 6sylib 218 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥𝐴𝑥0 ))
5251simpld 494 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥𝐴)
5349, 52sseldd 3964 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Base‘𝑅))
5451simprd 495 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥0 )
5535, 32, 13drngunit 20699 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5655ad2antrr 726 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5753, 54, 56mpbir2and 713 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑅))
58 simprr 772 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝐼𝑥) ∈ 𝐴)
592, 32, 18, 26subrgunit 20555 . . . . . . . . . . 11 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6059ad2antlr 727 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6157, 52, 58, 60mpbir3and 1343 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑆))
6261expr 456 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((𝐼𝑥) ∈ 𝐴𝑥 ∈ (Unit‘𝑆)))
6362ralimdva 3153 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆)))
6463imp 406 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
65 dfss3 3952 . . . . . 6 ((𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆) ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
6664, 65sylibr 234 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆))
6748, 66eqssd 3981 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = (𝐴 ∖ { 0 }))
6814ad2antlr 727 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 0 = (0g𝑆))
6968sneqd 4618 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → { 0 } = {(0g𝑆)})
7041, 69difeq12d 4107 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7167, 70eqtrd 2771 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7217, 18, 19isdrng 20698 . . 3 (𝑆 ∈ DivRing ↔ (𝑆 ∈ Ring ∧ (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)})))
7331, 71, 72sylanbrc 583 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ DivRing)
7430, 73impbida 800 1 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  cin 3930  wss 3931  {csn 4606  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  0gc0g 17458  Ringcrg 20198  Unitcui 20320  invrcinvr 20352  SubRingcsubrg 20534  DivRingcdr 20694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-subrg 20535  df-drng 20696
This theorem is referenced by:  issdrg2  20760  cnsubdrglem  21391  extdg1id  33712
  Copyright terms: Public domain W3C validator