MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubdrg Structured version   Visualization version   GIF version

Theorem issubdrg 19964
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubdrg.s 𝑆 = (𝑅s 𝐴)
issubdrg.z 0 = (0g𝑅)
issubdrg.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
issubdrg ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆   𝑥, 0
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem issubdrg
StepHypRef Expression
1 simpllr 772 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 ∈ (SubRing‘𝑅))
2 issubdrg.s . . . . . . 7 𝑆 = (𝑅s 𝐴)
32subrgring 19942 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
41, 3syl 17 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑆 ∈ Ring)
5 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (𝐴 ∖ { 0 }))
6 eldifsn 4717 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ { 0 }) ↔ (𝑥𝐴𝑥0 ))
75, 6sylib 217 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥𝐴𝑥0 ))
87simpld 494 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥𝐴)
92subrgbas 19948 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
101, 9syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 = (Base‘𝑆))
118, 10eleqtrd 2841 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Base‘𝑆))
127simprd 495 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥0 )
13 issubdrg.z . . . . . . . . 9 0 = (0g𝑅)
142, 13subrg0 19946 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g𝑆))
151, 14syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 0 = (0g𝑆))
1612, 15neeqtrd 3012 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ≠ (0g𝑆))
17 eqid 2738 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 eqid 2738 . . . . . . . 8 (Unit‘𝑆) = (Unit‘𝑆)
19 eqid 2738 . . . . . . . 8 (0g𝑆) = (0g𝑆)
2017, 18, 19drngunit 19911 . . . . . . 7 (𝑆 ∈ DivRing → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2120ad2antlr 723 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2211, 16, 21mpbir2and 709 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑆))
23 eqid 2738 . . . . . 6 (invr𝑆) = (invr𝑆)
2418, 23, 17ringinvcl 19833 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝑆)) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
254, 22, 24syl2anc 583 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
26 issubdrg.i . . . . . 6 𝐼 = (invr𝑅)
272, 26, 18, 23subrginv 19955 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Unit‘𝑆)) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
281, 22, 27syl2anc 583 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
2925, 28, 103eltr4d 2854 . . 3 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) ∈ 𝐴)
3029ralrimiva 3107 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) → ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴)
313ad2antlr 723 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ Ring)
32 eqid 2738 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
332, 32, 18subrguss 19954 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
3433ad2antlr 723 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
35 eqid 2738 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
3635, 32, 13isdrng 19910 . . . . . . . . . 10 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 })))
3736simprbi 496 . . . . . . . . 9 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3837ad2antrr 722 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3934, 38sseqtrd 3957 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ ((Base‘𝑅) ∖ { 0 }))
4017, 18unitss 19817 . . . . . . . 8 (Unit‘𝑆) ⊆ (Base‘𝑆)
419ad2antlr 723 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 = (Base‘𝑆))
4240, 41sseqtrrid 3970 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ 𝐴)
4339, 42ssind 4163 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4435subrgss 19940 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
4544ad2antlr 723 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 ⊆ (Base‘𝑅))
46 difin2 4222 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4745, 46syl 17 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4843, 47sseqtrrd 3958 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (𝐴 ∖ { 0 }))
4944ad2antlr 723 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝐴 ⊆ (Base‘𝑅))
50 simprl 767 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (𝐴 ∖ { 0 }))
5150, 6sylib 217 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥𝐴𝑥0 ))
5251simpld 494 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥𝐴)
5349, 52sseldd 3918 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Base‘𝑅))
5451simprd 495 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥0 )
5535, 32, 13drngunit 19911 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5655ad2antrr 722 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5753, 54, 56mpbir2and 709 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑅))
58 simprr 769 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝐼𝑥) ∈ 𝐴)
592, 32, 18, 26subrgunit 19957 . . . . . . . . . . 11 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6059ad2antlr 723 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6157, 52, 58, 60mpbir3and 1340 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑆))
6261expr 456 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((𝐼𝑥) ∈ 𝐴𝑥 ∈ (Unit‘𝑆)))
6362ralimdva 3102 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆)))
6463imp 406 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
65 dfss3 3905 . . . . . 6 ((𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆) ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
6664, 65sylibr 233 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆))
6748, 66eqssd 3934 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = (𝐴 ∖ { 0 }))
6814ad2antlr 723 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 0 = (0g𝑆))
6968sneqd 4570 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → { 0 } = {(0g𝑆)})
7041, 69difeq12d 4054 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7167, 70eqtrd 2778 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7217, 18, 19isdrng 19910 . . 3 (𝑆 ∈ DivRing ↔ (𝑆 ∈ Ring ∧ (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)})))
7331, 71, 72sylanbrc 582 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ DivRing)
7430, 73impbida 797 1 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  0gc0g 17067  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  DivRingcdr 19906  SubRingcsubrg 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-subrg 19937
This theorem is referenced by:  issdrg2  19981  cnsubdrglem  20561  extdg1id  31640
  Copyright terms: Public domain W3C validator