Step | Hyp | Ref
| Expression |
1 | | simpllr 774 |
. . . . . 6
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π΄ β (SubRingβπ
)) |
2 | | issubdrg.s |
. . . . . . 7
β’ π = (π
βΎs π΄) |
3 | 2 | subrgring 20358 |
. . . . . 6
β’ (π΄ β (SubRingβπ
) β π β Ring) |
4 | 1, 3 | syl 17 |
. . . . 5
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π β Ring) |
5 | | simpr 485 |
. . . . . . . . 9
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π₯ β (π΄ β { 0 })) |
6 | | eldifsn 4789 |
. . . . . . . . 9
β’ (π₯ β (π΄ β { 0 }) β (π₯ β π΄ β§ π₯ β 0 )) |
7 | 5, 6 | sylib 217 |
. . . . . . . 8
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β (π₯ β π΄ β§ π₯ β 0 )) |
8 | 7 | simpld 495 |
. . . . . . 7
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π₯ β π΄) |
9 | 2 | subrgbas 20364 |
. . . . . . . 8
β’ (π΄ β (SubRingβπ
) β π΄ = (Baseβπ)) |
10 | 1, 9 | syl 17 |
. . . . . . 7
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π΄ = (Baseβπ)) |
11 | 8, 10 | eleqtrd 2835 |
. . . . . 6
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π₯ β (Baseβπ)) |
12 | 7 | simprd 496 |
. . . . . . 7
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π₯ β 0 ) |
13 | | issubdrg.z |
. . . . . . . . 9
β’ 0 =
(0gβπ
) |
14 | 2, 13 | subrg0 20362 |
. . . . . . . 8
β’ (π΄ β (SubRingβπ
) β 0 =
(0gβπ)) |
15 | 1, 14 | syl 17 |
. . . . . . 7
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β 0 =
(0gβπ)) |
16 | 12, 15 | neeqtrd 3010 |
. . . . . 6
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π₯ β (0gβπ)) |
17 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
18 | | eqid 2732 |
. . . . . . . 8
β’
(Unitβπ) =
(Unitβπ) |
19 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπ) = (0gβπ) |
20 | 17, 18, 19 | drngunit 20312 |
. . . . . . 7
β’ (π β DivRing β (π₯ β (Unitβπ) β (π₯ β (Baseβπ) β§ π₯ β (0gβπ)))) |
21 | 20 | ad2antlr 725 |
. . . . . 6
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β (π₯ β (Unitβπ) β (π₯ β (Baseβπ) β§ π₯ β (0gβπ)))) |
22 | 11, 16, 21 | mpbir2and 711 |
. . . . 5
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β π₯ β (Unitβπ)) |
23 | | eqid 2732 |
. . . . . 6
β’
(invrβπ) = (invrβπ) |
24 | 18, 23, 17 | ringinvcl 20198 |
. . . . 5
β’ ((π β Ring β§ π₯ β (Unitβπ)) β
((invrβπ)βπ₯) β (Baseβπ)) |
25 | 4, 22, 24 | syl2anc 584 |
. . . 4
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β
((invrβπ)βπ₯) β (Baseβπ)) |
26 | | issubdrg.i |
. . . . . 6
β’ πΌ = (invrβπ
) |
27 | 2, 26, 18, 23 | subrginv 20371 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π₯ β (Unitβπ)) β (πΌβπ₯) = ((invrβπ)βπ₯)) |
28 | 1, 22, 27 | syl2anc 584 |
. . . 4
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β (πΌβπ₯) = ((invrβπ)βπ₯)) |
29 | 25, 28, 10 | 3eltr4d 2848 |
. . 3
β’ ((((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β§ π₯ β (π΄ β { 0 })) β (πΌβπ₯) β π΄) |
30 | 29 | ralrimiva 3146 |
. 2
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π β DivRing) β βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) |
31 | 3 | ad2antlr 725 |
. . 3
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β π β Ring) |
32 | | eqid 2732 |
. . . . . . . . . 10
β’
(Unitβπ
) =
(Unitβπ
) |
33 | 2, 32, 18 | subrguss 20370 |
. . . . . . . . 9
β’ (π΄ β (SubRingβπ
) β (Unitβπ) β (Unitβπ
)) |
34 | 33 | ad2antlr 725 |
. . . . . . . 8
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ) β (Unitβπ
)) |
35 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Baseβπ
) =
(Baseβπ
) |
36 | 35, 32, 13 | isdrng 20311 |
. . . . . . . . . 10
β’ (π
β DivRing β (π
β Ring β§
(Unitβπ
) =
((Baseβπ
) β {
0
}))) |
37 | 36 | simprbi 497 |
. . . . . . . . 9
β’ (π
β DivRing β
(Unitβπ
) =
((Baseβπ
) β {
0
})) |
38 | 37 | ad2antrr 724 |
. . . . . . . 8
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ
) = ((Baseβπ
) β { 0 })) |
39 | 34, 38 | sseqtrd 4021 |
. . . . . . 7
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ) β ((Baseβπ
) β { 0 })) |
40 | 17, 18 | unitss 20182 |
. . . . . . . 8
β’
(Unitβπ)
β (Baseβπ) |
41 | 9 | ad2antlr 725 |
. . . . . . . 8
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β π΄ = (Baseβπ)) |
42 | 40, 41 | sseqtrrid 4034 |
. . . . . . 7
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ) β π΄) |
43 | 39, 42 | ssind 4231 |
. . . . . 6
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ) β (((Baseβπ
) β { 0 }) β© π΄)) |
44 | 35 | subrgss 20356 |
. . . . . . . 8
β’ (π΄ β (SubRingβπ
) β π΄ β (Baseβπ
)) |
45 | 44 | ad2antlr 725 |
. . . . . . 7
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β π΄ β (Baseβπ
)) |
46 | | difin2 4290 |
. . . . . . 7
β’ (π΄ β (Baseβπ
) β (π΄ β { 0 }) = (((Baseβπ
) β { 0 }) β© π΄)) |
47 | 45, 46 | syl 17 |
. . . . . 6
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (π΄ β { 0 }) = (((Baseβπ
) β { 0 }) β© π΄)) |
48 | 43, 47 | sseqtrrd 4022 |
. . . . 5
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ) β (π΄ β { 0 })) |
49 | 44 | ad2antlr 725 |
. . . . . . . . . . . 12
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β π΄ β (Baseβπ
)) |
50 | | simprl 769 |
. . . . . . . . . . . . . 14
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β π₯ β (π΄ β { 0 })) |
51 | 50, 6 | sylib 217 |
. . . . . . . . . . . . 13
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β (π₯ β π΄ β§ π₯ β 0 )) |
52 | 51 | simpld 495 |
. . . . . . . . . . . 12
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β π₯ β π΄) |
53 | 49, 52 | sseldd 3982 |
. . . . . . . . . . 11
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β π₯ β (Baseβπ
)) |
54 | 51 | simprd 496 |
. . . . . . . . . . 11
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β π₯ β 0 ) |
55 | 35, 32, 13 | drngunit 20312 |
. . . . . . . . . . . 12
β’ (π
β DivRing β (π₯ β (Unitβπ
) β (π₯ β (Baseβπ
) β§ π₯ β 0 ))) |
56 | 55 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β (π₯ β (Unitβπ
) β (π₯ β (Baseβπ
) β§ π₯ β 0 ))) |
57 | 53, 54, 56 | mpbir2and 711 |
. . . . . . . . . 10
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β π₯ β (Unitβπ
)) |
58 | | simprr 771 |
. . . . . . . . . 10
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β (πΌβπ₯) β π΄) |
59 | 2, 32, 18, 26 | subrgunit 20373 |
. . . . . . . . . . 11
β’ (π΄ β (SubRingβπ
) β (π₯ β (Unitβπ) β (π₯ β (Unitβπ
) β§ π₯ β π΄ β§ (πΌβπ₯) β π΄))) |
60 | 59 | ad2antlr 725 |
. . . . . . . . . 10
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β (π₯ β (Unitβπ) β (π₯ β (Unitβπ
) β§ π₯ β π΄ β§ (πΌβπ₯) β π΄))) |
61 | 57, 52, 58, 60 | mpbir3and 1342 |
. . . . . . . . 9
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ (π₯ β (π΄ β { 0 }) β§ (πΌβπ₯) β π΄)) β π₯ β (Unitβπ)) |
62 | 61 | expr 457 |
. . . . . . . 8
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ π₯ β (π΄ β { 0 })) β ((πΌβπ₯) β π΄ β π₯ β (Unitβπ))) |
63 | 62 | ralimdva 3167 |
. . . . . . 7
β’ ((π
β DivRing β§ π΄ β (SubRingβπ
)) β (βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄ β βπ₯ β (π΄ β { 0 })π₯ β (Unitβπ))) |
64 | 63 | imp 407 |
. . . . . 6
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β βπ₯ β (π΄ β { 0 })π₯ β (Unitβπ)) |
65 | | dfss3 3969 |
. . . . . 6
β’ ((π΄ β { 0 }) β
(Unitβπ) β
βπ₯ β (π΄ β { 0 })π₯ β (Unitβπ)) |
66 | 64, 65 | sylibr 233 |
. . . . 5
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (π΄ β { 0 }) β
(Unitβπ)) |
67 | 48, 66 | eqssd 3998 |
. . . 4
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ) = (π΄ β { 0 })) |
68 | 14 | ad2antlr 725 |
. . . . . 6
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β 0 =
(0gβπ)) |
69 | 68 | sneqd 4639 |
. . . . 5
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β { 0 } =
{(0gβπ)}) |
70 | 41, 69 | difeq12d 4122 |
. . . 4
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (π΄ β { 0 }) = ((Baseβπ) β
{(0gβπ)})) |
71 | 67, 70 | eqtrd 2772 |
. . 3
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β (Unitβπ) = ((Baseβπ) β {(0gβπ)})) |
72 | 17, 18, 19 | isdrng 20311 |
. . 3
β’ (π β DivRing β (π β Ring β§
(Unitβπ) =
((Baseβπ) β
{(0gβπ)}))) |
73 | 31, 71, 72 | sylanbrc 583 |
. 2
β’ (((π
β DivRing β§ π΄ β (SubRingβπ
)) β§ βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄) β π β DivRing) |
74 | 30, 73 | impbida 799 |
1
β’ ((π
β DivRing β§ π΄ β (SubRingβπ
)) β (π β DivRing β βπ₯ β (π΄ β { 0 })(πΌβπ₯) β π΄)) |