Proof of Theorem issubdrg
Step | Hyp | Ref
| Expression |
1 | | simpllr 773 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 ∈ (SubRing‘𝑅)) |
2 | | issubdrg.s |
. . . . . . 7
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
3 | 2 | subrgring 20027 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑆 ∈ Ring) |
5 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (𝐴 ∖ { 0 })) |
6 | | eldifsn 4720 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ { 0 }) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 )) |
7 | 5, 6 | sylib 217 |
. . . . . . . 8
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 )) |
8 | 7 | simpld 495 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ 𝐴) |
9 | 2 | subrgbas 20033 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
10 | 1, 9 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 = (Base‘𝑆)) |
11 | 8, 10 | eleqtrd 2841 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Base‘𝑆)) |
12 | 7 | simprd 496 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ≠ 0 ) |
13 | | issubdrg.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
14 | 2, 13 | subrg0 20031 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 =
(0g‘𝑆)) |
15 | 1, 14 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 0 =
(0g‘𝑆)) |
16 | 12, 15 | neeqtrd 3013 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ≠ (0g‘𝑆)) |
17 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑆) =
(Base‘𝑆) |
18 | | eqid 2738 |
. . . . . . . 8
⊢
(Unit‘𝑆) =
(Unit‘𝑆) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑆) = (0g‘𝑆) |
20 | 17, 18, 19 | drngunit 19996 |
. . . . . . 7
⊢ (𝑆 ∈ DivRing → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆)))) |
21 | 20 | ad2antlr 724 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆)))) |
22 | 11, 16, 21 | mpbir2and 710 |
. . . . 5
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑆)) |
23 | | eqid 2738 |
. . . . . 6
⊢
(invr‘𝑆) = (invr‘𝑆) |
24 | 18, 23, 17 | ringinvcl 19918 |
. . . . 5
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝑆)) →
((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
25 | 4, 22, 24 | syl2anc 584 |
. . . 4
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) →
((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
26 | | issubdrg.i |
. . . . . 6
⊢ 𝐼 = (invr‘𝑅) |
27 | 2, 26, 18, 23 | subrginv 20040 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Unit‘𝑆)) → (𝐼‘𝑥) = ((invr‘𝑆)‘𝑥)) |
28 | 1, 22, 27 | syl2anc 584 |
. . . 4
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼‘𝑥) = ((invr‘𝑆)‘𝑥)) |
29 | 25, 28, 10 | 3eltr4d 2854 |
. . 3
⊢ ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼‘𝑥) ∈ 𝐴) |
30 | 29 | ralrimiva 3103 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) → ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) |
31 | 3 | ad2antlr 724 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → 𝑆 ∈ Ring) |
32 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
33 | 2, 32, 18 | subrguss 20039 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → (Unit‘𝑆) ⊆ (Unit‘𝑅)) |
34 | 33 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (Unit‘𝑅)) |
35 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
36 | 35, 32, 13 | isdrng 19995 |
. . . . . . . . . 10
⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧
(Unit‘𝑅) =
((Base‘𝑅) ∖ {
0
}))) |
37 | 36 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑅 ∈ DivRing →
(Unit‘𝑅) =
((Base‘𝑅) ∖ {
0
})) |
38 | 37 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 })) |
39 | 34, 38 | sseqtrd 3961 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ ((Base‘𝑅) ∖ { 0 })) |
40 | 17, 18 | unitss 19902 |
. . . . . . . 8
⊢
(Unit‘𝑆)
⊆ (Base‘𝑆) |
41 | 9 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → 𝐴 = (Base‘𝑆)) |
42 | 40, 41 | sseqtrrid 3974 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ 𝐴) |
43 | 39, 42 | ssind 4166 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴)) |
44 | 35 | subrgss 20025 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
45 | 44 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → 𝐴 ⊆ (Base‘𝑅)) |
46 | | difin2 4225 |
. . . . . . 7
⊢ (𝐴 ⊆ (Base‘𝑅) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴)) |
47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴)) |
48 | 43, 47 | sseqtrrd 3962 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (𝐴 ∖ { 0 })) |
49 | 44 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → 𝐴 ⊆ (Base‘𝑅)) |
50 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → 𝑥 ∈ (𝐴 ∖ { 0 })) |
51 | 50, 6 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 )) |
52 | 51 | simpld 495 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
53 | 49, 52 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → 𝑥 ∈ (Base‘𝑅)) |
54 | 51 | simprd 496 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → 𝑥 ≠ 0 ) |
55 | 35, 32, 13 | drngunit 19996 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ DivRing → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ 0 ))) |
56 | 55 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ 0 ))) |
57 | 53, 54, 56 | mpbir2and 710 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑅)) |
58 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → (𝐼‘𝑥) ∈ 𝐴) |
59 | 2, 32, 18, 26 | subrgunit 20042 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥 ∈ 𝐴 ∧ (𝐼‘𝑥) ∈ 𝐴))) |
60 | 59 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥 ∈ 𝐴 ∧ (𝐼‘𝑥) ∈ 𝐴))) |
61 | 57, 52, 58, 60 | mpbir3and 1341 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼‘𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑆)) |
62 | 61 | expr 457 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((𝐼‘𝑥) ∈ 𝐴 → 𝑥 ∈ (Unit‘𝑆))) |
63 | 62 | ralimdva 3108 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))) |
64 | 63 | imp 407 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆)) |
65 | | dfss3 3909 |
. . . . . 6
⊢ ((𝐴 ∖ { 0 }) ⊆
(Unit‘𝑆) ↔
∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆)) |
66 | 64, 65 | sylibr 233 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) ⊆
(Unit‘𝑆)) |
67 | 48, 66 | eqssd 3938 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑆) = (𝐴 ∖ { 0 })) |
68 | 14 | ad2antlr 724 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → 0 =
(0g‘𝑆)) |
69 | 68 | sneqd 4573 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → { 0 } =
{(0g‘𝑆)}) |
70 | 41, 69 | difeq12d 4058 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = ((Base‘𝑆) ∖
{(0g‘𝑆)})) |
71 | 67, 70 | eqtrd 2778 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g‘𝑆)})) |
72 | 17, 18, 19 | isdrng 19995 |
. . 3
⊢ (𝑆 ∈ DivRing ↔ (𝑆 ∈ Ring ∧
(Unit‘𝑆) =
((Base‘𝑆) ∖
{(0g‘𝑆)}))) |
73 | 31, 71, 72 | sylanbrc 583 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴) → 𝑆 ∈ DivRing) |
74 | 30, 73 | impbida 798 |
1
⊢ ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼‘𝑥) ∈ 𝐴)) |