MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubdrg Structured version   Visualization version   GIF version

Theorem issubdrg 19553
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubdrg.s 𝑆 = (𝑅s 𝐴)
issubdrg.z 0 = (0g𝑅)
issubdrg.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
issubdrg ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆   𝑥, 0
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem issubdrg
StepHypRef Expression
1 simpllr 775 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 ∈ (SubRing‘𝑅))
2 issubdrg.s . . . . . . 7 𝑆 = (𝑅s 𝐴)
32subrgring 19531 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
41, 3syl 17 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑆 ∈ Ring)
5 simpr 488 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (𝐴 ∖ { 0 }))
6 eldifsn 4680 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ { 0 }) ↔ (𝑥𝐴𝑥0 ))
75, 6sylib 221 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥𝐴𝑥0 ))
87simpld 498 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥𝐴)
92subrgbas 19537 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
101, 9syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝐴 = (Base‘𝑆))
118, 10eleqtrd 2892 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Base‘𝑆))
127simprd 499 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥0 )
13 issubdrg.z . . . . . . . . 9 0 = (0g𝑅)
142, 13subrg0 19535 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g𝑆))
151, 14syl 17 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 0 = (0g𝑆))
1612, 15neeqtrd 3056 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ≠ (0g𝑆))
17 eqid 2798 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 eqid 2798 . . . . . . . 8 (Unit‘𝑆) = (Unit‘𝑆)
19 eqid 2798 . . . . . . . 8 (0g𝑆) = (0g𝑆)
2017, 18, 19drngunit 19500 . . . . . . 7 (𝑆 ∈ DivRing → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2120ad2antlr 726 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))))
2211, 16, 21mpbir2and 712 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → 𝑥 ∈ (Unit‘𝑆))
23 eqid 2798 . . . . . 6 (invr𝑆) = (invr𝑆)
2418, 23, 17ringinvcl 19422 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝑆)) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
254, 22, 24syl2anc 587 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
26 issubdrg.i . . . . . 6 𝐼 = (invr𝑅)
272, 26, 18, 23subrginv 19544 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Unit‘𝑆)) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
281, 22, 27syl2anc 587 . . . 4 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) = ((invr𝑆)‘𝑥))
2925, 28, 103eltr4d 2905 . . 3 ((((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → (𝐼𝑥) ∈ 𝐴)
3029ralrimiva 3149 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑆 ∈ DivRing) → ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴)
313ad2antlr 726 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ Ring)
32 eqid 2798 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
332, 32, 18subrguss 19543 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
3433ad2antlr 726 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (Unit‘𝑅))
35 eqid 2798 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
3635, 32, 13isdrng 19499 . . . . . . . . . 10 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 })))
3736simprbi 500 . . . . . . . . 9 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3837ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑅) = ((Base‘𝑅) ∖ { 0 }))
3934, 38sseqtrd 3955 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ ((Base‘𝑅) ∖ { 0 }))
4017, 18unitss 19406 . . . . . . . 8 (Unit‘𝑆) ⊆ (Base‘𝑆)
419ad2antlr 726 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 = (Base‘𝑆))
4240, 41sseqtrrid 3968 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ 𝐴)
4339, 42ssind 4159 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4435subrgss 19529 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
4544ad2antlr 726 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝐴 ⊆ (Base‘𝑅))
46 difin2 4216 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4745, 46syl 17 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = (((Base‘𝑅) ∖ { 0 }) ∩ 𝐴))
4843, 47sseqtrrd 3956 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) ⊆ (𝐴 ∖ { 0 }))
4944ad2antlr 726 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝐴 ⊆ (Base‘𝑅))
50 simprl 770 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (𝐴 ∖ { 0 }))
5150, 6sylib 221 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥𝐴𝑥0 ))
5251simpld 498 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥𝐴)
5349, 52sseldd 3916 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Base‘𝑅))
5451simprd 499 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥0 )
5535, 32, 13drngunit 19500 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5655ad2antrr 725 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑥0 )))
5753, 54, 56mpbir2and 712 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑅))
58 simprr 772 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝐼𝑥) ∈ 𝐴)
592, 32, 18, 26subrgunit 19546 . . . . . . . . . . 11 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6059ad2antlr 726 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥 ∈ (Unit‘𝑅) ∧ 𝑥𝐴 ∧ (𝐼𝑥) ∈ 𝐴)))
6157, 52, 58, 60mpbir3and 1339 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ (𝐴 ∖ { 0 }) ∧ (𝐼𝑥) ∈ 𝐴)) → 𝑥 ∈ (Unit‘𝑆))
6261expr 460 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ { 0 })) → ((𝐼𝑥) ∈ 𝐴𝑥 ∈ (Unit‘𝑆)))
6362ralimdva 3144 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴 → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆)))
6463imp 410 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
65 dfss3 3903 . . . . . 6 ((𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆) ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })𝑥 ∈ (Unit‘𝑆))
6664, 65sylibr 237 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) ⊆ (Unit‘𝑆))
6748, 66eqssd 3932 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = (𝐴 ∖ { 0 }))
6814ad2antlr 726 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 0 = (0g𝑆))
6968sneqd 4537 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → { 0 } = {(0g𝑆)})
7041, 69difeq12d 4051 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (𝐴 ∖ { 0 }) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7167, 70eqtrd 2833 . . 3 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)}))
7217, 18, 19isdrng 19499 . . 3 (𝑆 ∈ DivRing ↔ (𝑆 ∈ Ring ∧ (Unit‘𝑆) = ((Base‘𝑆) ∖ {(0g𝑆)})))
7331, 71, 72sylanbrc 586 . 2 (((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) ∧ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴) → 𝑆 ∈ DivRing)
7430, 73impbida 800 1 ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  cin 3880  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  0gc0g 16705  Ringcrg 19290  Unitcui 19385  invrcinvr 19417  DivRingcdr 19495  SubRingcsubrg 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-subrg 19526
This theorem is referenced by:  issdrg2  19570  cnsubdrglem  20142  extdg1id  31141
  Copyright terms: Public domain W3C validator