Step | Hyp | Ref
| Expression |
1 | | caragendifcl.o |
. 2
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
2 | | eqid 2738 |
. 2
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
3 | | caragendifcl.s |
. 2
⊢ 𝑆 = (CaraGen‘𝑂) |
4 | 3 | caragenss 44042 |
. . . . . 6
⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
6 | 5 | unissd 4849 |
. . . 4
⊢ (𝜑 → ∪ 𝑆
⊆ ∪ dom 𝑂) |
7 | 6 | ssdifssd 4077 |
. . 3
⊢ (𝜑 → (∪ 𝑆
∖ 𝐸) ⊆ ∪ dom 𝑂) |
8 | 3 | fvexi 6788 |
. . . . . . 7
⊢ 𝑆 ∈ V |
9 | 8 | uniex 7594 |
. . . . . 6
⊢ ∪ 𝑆
∈ V |
10 | | difexg 5251 |
. . . . . 6
⊢ (∪ 𝑆
∈ V → (∪ 𝑆 ∖ 𝐸) ∈ V) |
11 | 9, 10 | ax-mp 5 |
. . . . 5
⊢ (∪ 𝑆
∖ 𝐸) ∈
V |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → (∪ 𝑆
∖ 𝐸) ∈
V) |
13 | | elpwg 4536 |
. . . 4
⊢ ((∪ 𝑆
∖ 𝐸) ∈ V →
((∪ 𝑆 ∖ 𝐸) ∈ 𝒫 ∪ dom 𝑂 ↔ (∪ 𝑆 ∖ 𝐸) ⊆ ∪ dom
𝑂)) |
14 | 12, 13 | syl 17 |
. . 3
⊢ (𝜑 → ((∪ 𝑆
∖ 𝐸) ∈ 𝒫
∪ dom 𝑂 ↔ (∪ 𝑆 ∖ 𝐸) ⊆ ∪ dom
𝑂)) |
15 | 7, 14 | mpbird 256 |
. 2
⊢ (𝜑 → (∪ 𝑆
∖ 𝐸) ∈ 𝒫
∪ dom 𝑂) |
16 | | elpwi 4542 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom
𝑂) |
17 | 16 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ dom
𝑂) |
18 | 1, 3 | caragenuni 44049 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑆 =
∪ dom 𝑂) |
19 | 18 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝜑 → ∪ dom 𝑂 = ∪ 𝑆) |
20 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ∪ dom
𝑂 = ∪ 𝑆) |
21 | 17, 20 | sseqtrd 3961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ⊆ ∪ 𝑆) |
22 | | difin2 4225 |
. . . . . . 7
⊢ (𝑎 ⊆ ∪ 𝑆
→ (𝑎 ∖ 𝐸) = ((∪ 𝑆
∖ 𝐸) ∩ 𝑎)) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ 𝐸) = ((∪ 𝑆 ∖ 𝐸) ∩ 𝑎)) |
24 | | incom 4135 |
. . . . . . 7
⊢ ((∪ 𝑆
∖ 𝐸) ∩ 𝑎) = (𝑎 ∩ (∪ 𝑆 ∖ 𝐸)) |
25 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((∪
𝑆 ∖ 𝐸) ∩ 𝑎) = (𝑎 ∩ (∪ 𝑆 ∖ 𝐸))) |
26 | 23, 25 | eqtr2d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∩ (∪ 𝑆 ∖ 𝐸)) = (𝑎 ∖ 𝐸)) |
27 | 26 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∩ (∪ 𝑆 ∖ 𝐸))) = (𝑂‘(𝑎 ∖ 𝐸))) |
28 | 21 | ssdifd 4075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ 𝐸) ⊆ (∪
𝑆 ∖ 𝐸)) |
29 | | sscon 4073 |
. . . . . . . 8
⊢ ((𝑎 ∖ 𝐸) ⊆ (∪
𝑆 ∖ 𝐸) → (𝑎 ∖ (∪ 𝑆 ∖ 𝐸)) ⊆ (𝑎 ∖ (𝑎 ∖ 𝐸))) |
30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ (∪ 𝑆 ∖ 𝐸)) ⊆ (𝑎 ∖ (𝑎 ∖ 𝐸))) |
31 | | dfin4 4201 |
. . . . . . . . 9
⊢ (𝑎 ∩ 𝐸) = (𝑎 ∖ (𝑎 ∖ 𝐸)) |
32 | 31 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∩ 𝐸) = (𝑎 ∖ (𝑎 ∖ 𝐸))) |
33 | | eqimss2 3978 |
. . . . . . . 8
⊢ ((𝑎 ∩ 𝐸) = (𝑎 ∖ (𝑎 ∖ 𝐸)) → (𝑎 ∖ (𝑎 ∖ 𝐸)) ⊆ (𝑎 ∩ 𝐸)) |
34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ (𝑎 ∖ 𝐸)) ⊆ (𝑎 ∩ 𝐸)) |
35 | 30, 34 | sstrd 3931 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ (∪ 𝑆 ∖ 𝐸)) ⊆ (𝑎 ∩ 𝐸)) |
36 | | elinel1 4129 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑎 ∩ 𝐸) → 𝑥 ∈ 𝑎) |
37 | | elinel2 4130 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑎 ∩ 𝐸) → 𝑥 ∈ 𝐸) |
38 | | elndif 4063 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐸 → ¬ 𝑥 ∈ (∪ 𝑆 ∖ 𝐸)) |
39 | 37, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑎 ∩ 𝐸) → ¬ 𝑥 ∈ (∪ 𝑆 ∖ 𝐸)) |
40 | 36, 39 | eldifd 3898 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑎 ∩ 𝐸) → 𝑥 ∈ (𝑎 ∖ (∪ 𝑆 ∖ 𝐸))) |
41 | 40 | ssriv 3925 |
. . . . . . 7
⊢ (𝑎 ∩ 𝐸) ⊆ (𝑎 ∖ (∪ 𝑆 ∖ 𝐸)) |
42 | 41 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∩ 𝐸) ⊆ (𝑎 ∖ (∪ 𝑆 ∖ 𝐸))) |
43 | 35, 42 | eqssd 3938 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ (∪ 𝑆 ∖ 𝐸)) = (𝑎 ∩ 𝐸)) |
44 | 43 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∖ (∪ 𝑆 ∖ 𝐸))) = (𝑂‘(𝑎 ∩ 𝐸))) |
45 | 27, 44 | oveq12d 7293 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ (∪ 𝑆 ∖ 𝐸))) +𝑒 (𝑂‘(𝑎 ∖ (∪ 𝑆 ∖ 𝐸)))) = ((𝑂‘(𝑎 ∖ 𝐸)) +𝑒 (𝑂‘(𝑎 ∩ 𝐸)))) |
46 | | iccssxr 13162 |
. . . . 5
⊢
(0[,]+∞) ⊆ ℝ* |
47 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑂 ∈ OutMeas) |
48 | 17 | ssdifssd 4077 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∖ 𝐸) ⊆ ∪ dom
𝑂) |
49 | 47, 2, 48 | omecl 44041 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∖ 𝐸)) ∈ (0[,]+∞)) |
50 | 46, 49 | sselid 3919 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∖ 𝐸)) ∈
ℝ*) |
51 | | ssinss1 4171 |
. . . . . . . 8
⊢ (𝑎 ⊆ ∪ dom 𝑂 → (𝑎 ∩ 𝐸) ⊆ ∪ dom
𝑂) |
52 | 16, 51 | syl 17 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → (𝑎 ∩ 𝐸) ⊆ ∪ dom
𝑂) |
53 | 52 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑎 ∩ 𝐸) ⊆ ∪ dom
𝑂) |
54 | 47, 2, 53 | omecl 44041 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∩ 𝐸)) ∈ (0[,]+∞)) |
55 | 46, 54 | sselid 3919 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → (𝑂‘(𝑎 ∩ 𝐸)) ∈
ℝ*) |
56 | 50, 55 | xaddcomd 42863 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∖ 𝐸)) +𝑒 (𝑂‘(𝑎 ∩ 𝐸))) = ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸)))) |
57 | | caragendifcl.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑆) |
58 | 1, 3 | caragenel 44033 |
. . . . . 6
⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
59 | 57, 58 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
60 | 59 | simprd 496 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
61 | 60 | r19.21bi 3134 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
62 | 45, 56, 61 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ (∪ 𝑆 ∖ 𝐸))) +𝑒 (𝑂‘(𝑎 ∖ (∪ 𝑆 ∖ 𝐸)))) = (𝑂‘𝑎)) |
63 | 1, 2, 3, 15, 62 | carageneld 44040 |
1
⊢ (𝜑 → (∪ 𝑆
∖ 𝐸) ∈ 𝑆) |