Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragendifcl Structured version   Visualization version   GIF version

Theorem caragendifcl 46622
Description: The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragendifcl.o (𝜑𝑂 ∈ OutMeas)
caragendifcl.s 𝑆 = (CaraGen‘𝑂)
caragendifcl.e (𝜑𝐸𝑆)
Assertion
Ref Expression
caragendifcl (𝜑 → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem caragendifcl
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caragendifcl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2731 . 2 dom 𝑂 = dom 𝑂
3 caragendifcl.s . 2 𝑆 = (CaraGen‘𝑂)
43caragenss 46612 . . . . . 6 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ dom 𝑂)
65unissd 4866 . . . 4 (𝜑 𝑆 dom 𝑂)
76ssdifssd 4094 . . 3 (𝜑 → ( 𝑆𝐸) ⊆ dom 𝑂)
83fvexi 6836 . . . . . . 7 𝑆 ∈ V
98uniex 7674 . . . . . 6 𝑆 ∈ V
10 difexg 5265 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆𝐸) ∈ V)
119, 10ax-mp 5 . . . . 5 ( 𝑆𝐸) ∈ V
1211a1i 11 . . . 4 (𝜑 → ( 𝑆𝐸) ∈ V)
13 elpwg 4550 . . . 4 (( 𝑆𝐸) ∈ V → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
1412, 13syl 17 . . 3 (𝜑 → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
157, 14mpbird 257 . 2 (𝜑 → ( 𝑆𝐸) ∈ 𝒫 dom 𝑂)
16 elpwi 4554 . . . . . . . . 9 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1716adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
181, 3caragenuni 46619 . . . . . . . . . 10 (𝜑 𝑆 = dom 𝑂)
1918eqcomd 2737 . . . . . . . . 9 (𝜑 dom 𝑂 = 𝑆)
2019adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → dom 𝑂 = 𝑆)
2117, 20sseqtrd 3966 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 𝑆)
22 difin2 4248 . . . . . . 7 (𝑎 𝑆 → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
2321, 22syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
24 incom 4156 . . . . . . 7 (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸))
2524a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸)))
2623, 25eqtr2d 2767 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∩ ( 𝑆𝐸)) = (𝑎𝐸))
2726fveq2d 6826 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∩ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
2821ssdifd 4092 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ ( 𝑆𝐸))
29 sscon 4090 . . . . . . . 8 ((𝑎𝐸) ⊆ ( 𝑆𝐸) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
3028, 29syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
31 dfin4 4225 . . . . . . . . 9 (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸))
3231a1i 11 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)))
33 eqimss2 3989 . . . . . . . 8 ((𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3432, 33syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3530, 34sstrd 3940 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎𝐸))
36 elinel1 4148 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → 𝑥𝑎)
37 elinel2 4149 . . . . . . . . . 10 (𝑥 ∈ (𝑎𝐸) → 𝑥𝐸)
38 elndif 4080 . . . . . . . . . 10 (𝑥𝐸 → ¬ 𝑥 ∈ ( 𝑆𝐸))
3937, 38syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → ¬ 𝑥 ∈ ( 𝑆𝐸))
4036, 39eldifd 3908 . . . . . . . 8 (𝑥 ∈ (𝑎𝐸) → 𝑥 ∈ (𝑎 ∖ ( 𝑆𝐸)))
4140ssriv 3933 . . . . . . 7 (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸))
4241a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸)))
4335, 42eqssd 3947 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) = (𝑎𝐸))
4443fveq2d 6826 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∖ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
4527, 44oveq12d 7364 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
46 iccssxr 13330 . . . . 5 (0[,]+∞) ⊆ ℝ*
471adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
4817ssdifssd 4094 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
4947, 2, 48omecl 46611 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5046, 49sselid 3927 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
51 ssinss1 4193 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5216, 51syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5352adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
5447, 2, 53omecl 46611 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5546, 54sselid 3927 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
5650, 55xaddcomd 45433 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
57 caragendifcl.e . . . . . 6 (𝜑𝐸𝑆)
581, 3caragenel 46603 . . . . . 6 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
5957, 58mpbid 232 . . . . 5 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
6059simprd 495 . . . 4 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6160r19.21bi 3224 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6245, 56, 613eqtrd 2770 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = (𝑂𝑎))
631, 2, 3, 15, 62carageneld 46610 1 (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856  dom cdm 5614  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  *cxr 11145   +𝑒 cxad 13009  [,]cicc 13248  OutMeascome 46597  CaraGenccaragen 46599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-xadd 13012  df-icc 13252  df-ome 46598  df-caragen 46600
This theorem is referenced by:  caragensal  46633
  Copyright terms: Public domain W3C validator