Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragendifcl Structured version   Visualization version   GIF version

Theorem caragendifcl 42360
Description: The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragendifcl.o (𝜑𝑂 ∈ OutMeas)
caragendifcl.s 𝑆 = (CaraGen‘𝑂)
caragendifcl.e (𝜑𝐸𝑆)
Assertion
Ref Expression
caragendifcl (𝜑 → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem caragendifcl
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caragendifcl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2797 . 2 dom 𝑂 = dom 𝑂
3 caragendifcl.s . 2 𝑆 = (CaraGen‘𝑂)
43caragenss 42350 . . . . . 6 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ dom 𝑂)
65unissd 4775 . . . 4 (𝜑 𝑆 dom 𝑂)
76ssdifssd 4046 . . 3 (𝜑 → ( 𝑆𝐸) ⊆ dom 𝑂)
83fvexi 6559 . . . . . . 7 𝑆 ∈ V
98uniex 7330 . . . . . 6 𝑆 ∈ V
10 difexg 5129 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆𝐸) ∈ V)
119, 10ax-mp 5 . . . . 5 ( 𝑆𝐸) ∈ V
1211a1i 11 . . . 4 (𝜑 → ( 𝑆𝐸) ∈ V)
13 elpwg 4467 . . . 4 (( 𝑆𝐸) ∈ V → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
1412, 13syl 17 . . 3 (𝜑 → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
157, 14mpbird 258 . 2 (𝜑 → ( 𝑆𝐸) ∈ 𝒫 dom 𝑂)
16 elpwi 4469 . . . . . . . . 9 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1716adantl 482 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
181, 3caragenuni 42357 . . . . . . . . . 10 (𝜑 𝑆 = dom 𝑂)
1918eqcomd 2803 . . . . . . . . 9 (𝜑 dom 𝑂 = 𝑆)
2019adantr 481 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → dom 𝑂 = 𝑆)
2117, 20sseqtrd 3934 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 𝑆)
22 difin2 4192 . . . . . . 7 (𝑎 𝑆 → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
2321, 22syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
24 incom 4105 . . . . . . 7 (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸))
2524a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸)))
2623, 25eqtr2d 2834 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∩ ( 𝑆𝐸)) = (𝑎𝐸))
2726fveq2d 6549 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∩ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
2821ssdifd 4044 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ ( 𝑆𝐸))
29 sscon 4042 . . . . . . . 8 ((𝑎𝐸) ⊆ ( 𝑆𝐸) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
3028, 29syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
31 dfin4 4170 . . . . . . . . 9 (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸))
3231a1i 11 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)))
33 eqimss2 3951 . . . . . . . 8 ((𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3432, 33syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3530, 34sstrd 3905 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎𝐸))
36 elinel1 4099 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → 𝑥𝑎)
37 elinel2 4100 . . . . . . . . . 10 (𝑥 ∈ (𝑎𝐸) → 𝑥𝐸)
38 elndif 4032 . . . . . . . . . 10 (𝑥𝐸 → ¬ 𝑥 ∈ ( 𝑆𝐸))
3937, 38syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → ¬ 𝑥 ∈ ( 𝑆𝐸))
4036, 39eldifd 3876 . . . . . . . 8 (𝑥 ∈ (𝑎𝐸) → 𝑥 ∈ (𝑎 ∖ ( 𝑆𝐸)))
4140ssriv 3899 . . . . . . 7 (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸))
4241a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸)))
4335, 42eqssd 3912 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) = (𝑎𝐸))
4443fveq2d 6549 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∖ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
4527, 44oveq12d 7041 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
46 iccssxr 12673 . . . . 5 (0[,]+∞) ⊆ ℝ*
471adantr 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
4817ssdifssd 4046 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
4947, 2, 48omecl 42349 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5046, 49sseldi 3893 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
51 ssinss1 4140 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5216, 51syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5352adantl 482 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
5447, 2, 53omecl 42349 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5546, 54sseldi 3893 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
5650, 55xaddcomd 41154 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
57 caragendifcl.e . . . . . 6 (𝜑𝐸𝑆)
581, 3caragenel 42341 . . . . . 6 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
5957, 58mpbid 233 . . . . 5 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
6059simprd 496 . . . 4 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6160r19.21bi 3177 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6245, 56, 613eqtrd 2837 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = (𝑂𝑎))
631, 2, 3, 15, 62carageneld 42348 1 (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wral 3107  Vcvv 3440  cdif 3862  cin 3864  wss 3865  𝒫 cpw 4459   cuni 4751  dom cdm 5450  cfv 6232  (class class class)co 7023  0cc0 10390  +∞cpnf 10525  *cxr 10527   +𝑒 cxad 12359  [,]cicc 12595  OutMeascome 42335  CaraGenccaragen 42337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-xadd 12362  df-icc 12599  df-ome 42336  df-caragen 42338
This theorem is referenced by:  caragensal  42371
  Copyright terms: Public domain W3C validator