Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragendifcl Structured version   Visualization version   GIF version

Theorem caragendifcl 46470
Description: The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragendifcl.o (𝜑𝑂 ∈ OutMeas)
caragendifcl.s 𝑆 = (CaraGen‘𝑂)
caragendifcl.e (𝜑𝐸𝑆)
Assertion
Ref Expression
caragendifcl (𝜑 → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem caragendifcl
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caragendifcl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2735 . 2 dom 𝑂 = dom 𝑂
3 caragendifcl.s . 2 𝑆 = (CaraGen‘𝑂)
43caragenss 46460 . . . . . 6 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ dom 𝑂)
65unissd 4922 . . . 4 (𝜑 𝑆 dom 𝑂)
76ssdifssd 4157 . . 3 (𝜑 → ( 𝑆𝐸) ⊆ dom 𝑂)
83fvexi 6921 . . . . . . 7 𝑆 ∈ V
98uniex 7760 . . . . . 6 𝑆 ∈ V
10 difexg 5335 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆𝐸) ∈ V)
119, 10ax-mp 5 . . . . 5 ( 𝑆𝐸) ∈ V
1211a1i 11 . . . 4 (𝜑 → ( 𝑆𝐸) ∈ V)
13 elpwg 4608 . . . 4 (( 𝑆𝐸) ∈ V → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
1412, 13syl 17 . . 3 (𝜑 → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
157, 14mpbird 257 . 2 (𝜑 → ( 𝑆𝐸) ∈ 𝒫 dom 𝑂)
16 elpwi 4612 . . . . . . . . 9 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1716adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
181, 3caragenuni 46467 . . . . . . . . . 10 (𝜑 𝑆 = dom 𝑂)
1918eqcomd 2741 . . . . . . . . 9 (𝜑 dom 𝑂 = 𝑆)
2019adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → dom 𝑂 = 𝑆)
2117, 20sseqtrd 4036 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 𝑆)
22 difin2 4307 . . . . . . 7 (𝑎 𝑆 → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
2321, 22syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
24 incom 4217 . . . . . . 7 (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸))
2524a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸)))
2623, 25eqtr2d 2776 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∩ ( 𝑆𝐸)) = (𝑎𝐸))
2726fveq2d 6911 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∩ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
2821ssdifd 4155 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ ( 𝑆𝐸))
29 sscon 4153 . . . . . . . 8 ((𝑎𝐸) ⊆ ( 𝑆𝐸) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
3028, 29syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
31 dfin4 4284 . . . . . . . . 9 (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸))
3231a1i 11 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)))
33 eqimss2 4055 . . . . . . . 8 ((𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3432, 33syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3530, 34sstrd 4006 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎𝐸))
36 elinel1 4211 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → 𝑥𝑎)
37 elinel2 4212 . . . . . . . . . 10 (𝑥 ∈ (𝑎𝐸) → 𝑥𝐸)
38 elndif 4143 . . . . . . . . . 10 (𝑥𝐸 → ¬ 𝑥 ∈ ( 𝑆𝐸))
3937, 38syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → ¬ 𝑥 ∈ ( 𝑆𝐸))
4036, 39eldifd 3974 . . . . . . . 8 (𝑥 ∈ (𝑎𝐸) → 𝑥 ∈ (𝑎 ∖ ( 𝑆𝐸)))
4140ssriv 3999 . . . . . . 7 (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸))
4241a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸)))
4335, 42eqssd 4013 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) = (𝑎𝐸))
4443fveq2d 6911 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∖ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
4527, 44oveq12d 7449 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
46 iccssxr 13467 . . . . 5 (0[,]+∞) ⊆ ℝ*
471adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
4817ssdifssd 4157 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
4947, 2, 48omecl 46459 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5046, 49sselid 3993 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
51 ssinss1 4254 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5216, 51syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5352adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
5447, 2, 53omecl 46459 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5546, 54sselid 3993 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
5650, 55xaddcomd 45274 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
57 caragendifcl.e . . . . . 6 (𝜑𝐸𝑆)
581, 3caragenel 46451 . . . . . 6 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
5957, 58mpbid 232 . . . . 5 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
6059simprd 495 . . . 4 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6160r19.21bi 3249 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6245, 56, 613eqtrd 2779 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = (𝑂𝑎))
631, 2, 3, 15, 62carageneld 46458 1 (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cdif 3960  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912  dom cdm 5689  cfv 6563  (class class class)co 7431  0cc0 11153  +∞cpnf 11290  *cxr 11292   +𝑒 cxad 13150  [,]cicc 13387  OutMeascome 46445  CaraGenccaragen 46447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-xadd 13153  df-icc 13391  df-ome 46446  df-caragen 46448
This theorem is referenced by:  caragensal  46481
  Copyright terms: Public domain W3C validator