| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrelog3 | Structured version Visualization version GIF version | ||
| Description: The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024.) |
| Ref | Expression |
|---|---|
| dvrelog3.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| dvrelog3.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| dvrelog3.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| dvrelog3.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| dvrelog3.5 | ⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) |
| dvrelog3.6 | ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) |
| Ref | Expression |
|---|---|
| dvrelog3 | ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrelog3.5 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) |
| 3 | 2 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)))) |
| 4 | reelprrecn 11098 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 6 | rpcn 12901 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
| 8 | rpne0 12907 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
| 10 | 7, 9 | logcld 26507 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
| 11 | 1red 11113 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ) | |
| 12 | rpre 12899 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) |
| 14 | 11, 13, 9 | redivcld 11949 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ) |
| 15 | logf1o 26501 | . . . . . . . . . 10 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
| 16 | f1of 6763 | . . . . . . . . . 10 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . . 9 ⊢ log:(ℂ ∖ {0})⟶ran log |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → log:(ℂ ∖ {0})⟶ran log) |
| 19 | 0nrp 12927 | . . . . . . . . . . . 12 ⊢ ¬ 0 ∈ ℝ+ | |
| 20 | disjsn 4664 | . . . . . . . . . . . 12 ⊢ ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+) | |
| 21 | 19, 20 | mpbir 231 | . . . . . . . . . . 11 ⊢ (ℝ+ ∩ {0}) = ∅ |
| 22 | disjdif2 4430 | . . . . . . . . . . 11 ⊢ ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) = ℝ+ |
| 24 | rpssre 12898 | . . . . . . . . . . . 12 ⊢ ℝ+ ⊆ ℝ | |
| 25 | ax-resscn 11063 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
| 26 | 24, 25 | sstri 3944 | . . . . . . . . . . 11 ⊢ ℝ+ ⊆ ℂ |
| 27 | ssdif 4094 | . . . . . . . . . . 11 ⊢ (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}) |
| 29 | 23, 28 | eqsstrri 3982 | . . . . . . . . 9 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
| 30 | 29 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ+ ⊆ (ℂ ∖ {0})) |
| 31 | 18, 30 | feqresmpt 6891 | . . . . . . 7 ⊢ (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 32 | 31 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+)) |
| 33 | 32 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+))) |
| 34 | dvrelog 26574 | . . . . . 6 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 36 | 33, 35 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 37 | dvrelog3.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 38 | dvrelog3.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 39 | elioo2 13286 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 < 𝐵))) | |
| 40 | 37, 38, 39 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 < 𝐵))) |
| 41 | 40 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 < 𝐵)) |
| 42 | 41 | simp1d 1142 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ) |
| 43 | 0red 11115 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) | |
| 44 | 43 | rexrd 11162 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ*) |
| 45 | 37 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*) |
| 46 | 42 | rexrd 11162 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ*) |
| 47 | dvrelog3.3 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 48 | 47 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴) |
| 49 | 41 | simp2d 1143 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦) |
| 50 | 44, 45, 46, 48, 49 | xrlelttrd 13059 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 < 𝑦) |
| 51 | 42, 50 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦)) |
| 52 | elrp 12892 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) | |
| 53 | 51, 52 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+) |
| 54 | 53 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ+)) |
| 55 | 54 | ssrdv 3940 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+) |
| 56 | tgioo4 24721 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 57 | eqid 2731 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 58 | retop 24677 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 59 | 58 | a1i 11 | . . . . 5 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
| 60 | iooretop 24681 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
| 61 | 60 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,))) |
| 62 | isopn3i 22998 | . . . . 5 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) | |
| 63 | 59, 61, 62 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
| 64 | 5, 10, 14, 36, 55, 56, 57, 63 | dvmptres2 25894 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 65 | 3, 64 | eqtrd 2766 | . 2 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 66 | dvrelog3.6 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) | |
| 67 | 66 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 68 | 67 | eqcomd 2737 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺) |
| 69 | 65, 68 | eqtrd 2766 | 1 ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 {cpr 4578 class class class wbr 5091 ↦ cmpt 5172 ran crn 5617 ↾ cres 5618 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 / cdiv 11774 ℝ+crp 12890 (,)cioo 13245 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21292 Topctop 22809 intcnt 22933 D cdv 25792 logclog 26491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 |
| This theorem is referenced by: dvrelog2b 42105 |
| Copyright terms: Public domain | W3C validator |