Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelog3 Structured version   Visualization version   GIF version

Theorem dvrelog3 42104
Description: The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024.)
Hypotheses
Ref Expression
dvrelog3.1 (𝜑𝐴 ∈ ℝ*)
dvrelog3.2 (𝜑𝐵 ∈ ℝ*)
dvrelog3.3 (𝜑 → 0 ≤ 𝐴)
dvrelog3.4 (𝜑𝐴𝐵)
dvrelog3.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))
dvrelog3.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
Assertion
Ref Expression
dvrelog3 (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelog3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelog3.5 . . . . 5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))
21a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)))
32oveq2d 7362 . . 3 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))))
4 reelprrecn 11098 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 rpcn 12901 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
76adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
8 rpne0 12907 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ≠ 0)
98adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
107, 9logcld 26507 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
11 1red 11113 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
12 rpre 12899 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1312adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1411, 13, 9redivcld 11949 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
15 logf1o 26501 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
16 f1of 6763 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
1715, 16ax-mp 5 . . . . . . . . 9 log:(ℂ ∖ {0})⟶ran log
1817a1i 11 . . . . . . . 8 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
19 0nrp 12927 . . . . . . . . . . . 12 ¬ 0 ∈ ℝ+
20 disjsn 4664 . . . . . . . . . . . 12 ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+)
2119, 20mpbir 231 . . . . . . . . . . 11 (ℝ+ ∩ {0}) = ∅
22 disjdif2 4430 . . . . . . . . . . 11 ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+)
2321, 22ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) = ℝ+
24 rpssre 12898 . . . . . . . . . . . 12 + ⊆ ℝ
25 ax-resscn 11063 . . . . . . . . . . . 12 ℝ ⊆ ℂ
2624, 25sstri 3944 . . . . . . . . . . 11 + ⊆ ℂ
27 ssdif 4094 . . . . . . . . . . 11 (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}))
2826, 27ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})
2923, 28eqsstrri 3982 . . . . . . . . 9 + ⊆ (ℂ ∖ {0})
3029a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
3118, 30feqresmpt 6891 . . . . . . 7 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3231eqcomd 2737 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+))
3332oveq2d 7362 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+)))
34 dvrelog 26574 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
3534a1i 11 . . . . 5 (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
3633, 35eqtrd 2766 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
37 dvrelog3.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
38 dvrelog3.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
39 elioo2 13286 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
4037, 38, 39syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
4140biimpa 476 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵))
4241simp1d 1142 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
43 0red 11115 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
4443rexrd 11162 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ*)
4537adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
4642rexrd 11162 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ*)
47 dvrelog3.3 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
4847adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
4941simp2d 1143 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦)
5044, 45, 46, 48, 49xrlelttrd 13059 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 < 𝑦)
5142, 50jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
52 elrp 12892 . . . . . . 7 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
5351, 52sylibr 234 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
5453ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ+))
5554ssrdv 3940 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+)
56 tgioo4 24721 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
57 eqid 2731 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
58 retop 24677 . . . . . 6 (topGen‘ran (,)) ∈ Top
5958a1i 11 . . . . 5 (𝜑 → (topGen‘ran (,)) ∈ Top)
60 iooretop 24681 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6160a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
62 isopn3i 22998 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
6359, 61, 62syl2anc 584 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
645, 10, 14, 36, 55, 56, 57, 63dvmptres2 25894 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
653, 64eqtrd 2766 . 2 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
66 dvrelog3.6 . . . 4 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
6766a1i 11 . . 3 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
6867eqcomd 2737 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺)
6965, 68eqtrd 2766 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3899  cin 3901  wss 3902  c0 4283  {csn 4576  {cpr 4578   class class class wbr 5091  cmpt 5172  ran crn 5617  cres 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  *cxr 11145   < clt 11146  cle 11147   / cdiv 11774  +crp 12890  (,)cioo 13245  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21292  Topctop 22809  intcnt 22933   D cdv 25792  logclog 26491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493
This theorem is referenced by:  dvrelog2b  42105
  Copyright terms: Public domain W3C validator