| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrelog3 | Structured version Visualization version GIF version | ||
| Description: The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024.) |
| Ref | Expression |
|---|---|
| dvrelog3.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| dvrelog3.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| dvrelog3.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| dvrelog3.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| dvrelog3.5 | ⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) |
| dvrelog3.6 | ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) |
| Ref | Expression |
|---|---|
| dvrelog3 | ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrelog3.5 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) |
| 3 | 2 | oveq2d 7419 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)))) |
| 4 | reelprrecn 11219 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 6 | rpcn 13017 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
| 8 | rpne0 13023 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
| 10 | 7, 9 | logcld 26529 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
| 11 | 1red 11234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ) | |
| 12 | rpre 13015 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) |
| 14 | 11, 13, 9 | redivcld 12067 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ) |
| 15 | logf1o 26523 | . . . . . . . . . 10 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
| 16 | f1of 6817 | . . . . . . . . . 10 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . . 9 ⊢ log:(ℂ ∖ {0})⟶ran log |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → log:(ℂ ∖ {0})⟶ran log) |
| 19 | 0nrp 13042 | . . . . . . . . . . . 12 ⊢ ¬ 0 ∈ ℝ+ | |
| 20 | disjsn 4687 | . . . . . . . . . . . 12 ⊢ ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+) | |
| 21 | 19, 20 | mpbir 231 | . . . . . . . . . . 11 ⊢ (ℝ+ ∩ {0}) = ∅ |
| 22 | disjdif2 4455 | . . . . . . . . . . 11 ⊢ ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) = ℝ+ |
| 24 | rpssre 13014 | . . . . . . . . . . . 12 ⊢ ℝ+ ⊆ ℝ | |
| 25 | ax-resscn 11184 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
| 26 | 24, 25 | sstri 3968 | . . . . . . . . . . 11 ⊢ ℝ+ ⊆ ℂ |
| 27 | ssdif 4119 | . . . . . . . . . . 11 ⊢ (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}) |
| 29 | 23, 28 | eqsstrri 4006 | . . . . . . . . 9 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
| 30 | 29 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ+ ⊆ (ℂ ∖ {0})) |
| 31 | 18, 30 | feqresmpt 6947 | . . . . . . 7 ⊢ (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 32 | 31 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+)) |
| 33 | 32 | oveq2d 7419 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+))) |
| 34 | dvrelog 26596 | . . . . . 6 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 36 | 33, 35 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 37 | dvrelog3.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 38 | dvrelog3.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 39 | elioo2 13401 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 < 𝐵))) | |
| 40 | 37, 38, 39 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 < 𝐵))) |
| 41 | 40 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦 ∧ 𝑦 < 𝐵)) |
| 42 | 41 | simp1d 1142 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ) |
| 43 | 0red 11236 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) | |
| 44 | 43 | rexrd 11283 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ*) |
| 45 | 37 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*) |
| 46 | 42 | rexrd 11283 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ*) |
| 47 | dvrelog3.3 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 48 | 47 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴) |
| 49 | 41 | simp2d 1143 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦) |
| 50 | 44, 45, 46, 48, 49 | xrlelttrd 13174 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 < 𝑦) |
| 51 | 42, 50 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦)) |
| 52 | elrp 13008 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) | |
| 53 | 51, 52 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+) |
| 54 | 53 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ+)) |
| 55 | 54 | ssrdv 3964 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+) |
| 56 | tgioo4 24742 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 57 | eqid 2735 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 58 | retop 24698 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 59 | 58 | a1i 11 | . . . . 5 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
| 60 | iooretop 24702 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
| 61 | 60 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,))) |
| 62 | isopn3i 23018 | . . . . 5 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) | |
| 63 | 59, 61, 62 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
| 64 | 5, 10, 14, 36, 55, 56, 57, 63 | dvmptres2 25916 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 65 | 3, 64 | eqtrd 2770 | . 2 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 66 | dvrelog3.6 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) | |
| 67 | 66 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 68 | 67 | eqcomd 2741 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺) |
| 69 | 65, 68 | eqtrd 2770 | 1 ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 {cpr 4603 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 ↾ cres 5656 ⟶wf 6526 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 / cdiv 11892 ℝ+crp 13006 (,)cioo 13360 TopOpenctopn 17433 topGenctg 17449 ℂfldccnfld 21313 Topctop 22829 intcnt 22953 D cdv 25814 logclog 26513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-cos 16084 df-pi 16086 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-cmp 23323 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 df-log 26515 |
| This theorem is referenced by: dvrelog2b 42025 |
| Copyright terms: Public domain | W3C validator |