Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelog3 Structured version   Visualization version   GIF version

Theorem dvrelog3 42026
Description: The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024.)
Hypotheses
Ref Expression
dvrelog3.1 (𝜑𝐴 ∈ ℝ*)
dvrelog3.2 (𝜑𝐵 ∈ ℝ*)
dvrelog3.3 (𝜑 → 0 ≤ 𝐴)
dvrelog3.4 (𝜑𝐴𝐵)
dvrelog3.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))
dvrelog3.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
Assertion
Ref Expression
dvrelog3 (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelog3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelog3.5 . . . . 5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))
21a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥)))
32oveq2d 7385 . . 3 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))))
4 reelprrecn 11136 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 rpcn 12938 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
76adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
8 rpne0 12944 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ≠ 0)
98adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
107, 9logcld 26455 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
11 1red 11151 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
12 rpre 12936 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1312adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1411, 13, 9redivcld 11986 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
15 logf1o 26449 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
16 f1of 6782 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
1715, 16ax-mp 5 . . . . . . . . 9 log:(ℂ ∖ {0})⟶ran log
1817a1i 11 . . . . . . . 8 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
19 0nrp 12964 . . . . . . . . . . . 12 ¬ 0 ∈ ℝ+
20 disjsn 4671 . . . . . . . . . . . 12 ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+)
2119, 20mpbir 231 . . . . . . . . . . 11 (ℝ+ ∩ {0}) = ∅
22 disjdif2 4439 . . . . . . . . . . 11 ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+)
2321, 22ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) = ℝ+
24 rpssre 12935 . . . . . . . . . . . 12 + ⊆ ℝ
25 ax-resscn 11101 . . . . . . . . . . . 12 ℝ ⊆ ℂ
2624, 25sstri 3953 . . . . . . . . . . 11 + ⊆ ℂ
27 ssdif 4103 . . . . . . . . . . 11 (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}))
2826, 27ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})
2923, 28eqsstrri 3991 . . . . . . . . 9 + ⊆ (ℂ ∖ {0})
3029a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
3118, 30feqresmpt 6912 . . . . . . 7 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3231eqcomd 2735 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+))
3332oveq2d 7385 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+)))
34 dvrelog 26522 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
3534a1i 11 . . . . 5 (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
3633, 35eqtrd 2764 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
37 dvrelog3.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
38 dvrelog3.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
39 elioo2 13323 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
4037, 38, 39syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵)))
4140biimpa 476 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 < 𝐵))
4241simp1d 1142 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
43 0red 11153 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
4443rexrd 11200 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ*)
4537adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
4642rexrd 11200 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ*)
47 dvrelog3.3 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
4847adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
4941simp2d 1143 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦)
5044, 45, 46, 48, 49xrlelttrd 13096 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 < 𝑦)
5142, 50jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
52 elrp 12929 . . . . . . 7 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
5351, 52sylibr 234 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
5453ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ+))
5554ssrdv 3949 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+)
56 tgioo4 24669 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
57 eqid 2729 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
58 retop 24625 . . . . . 6 (topGen‘ran (,)) ∈ Top
5958a1i 11 . . . . 5 (𝜑 → (topGen‘ran (,)) ∈ Top)
60 iooretop 24629 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6160a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
62 isopn3i 22945 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
6359, 61, 62syl2anc 584 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
645, 10, 14, 36, 55, 56, 57, 63dvmptres2 25842 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
653, 64eqtrd 2764 . 2 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
66 dvrelog3.6 . . . 4 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
6766a1i 11 . . 3 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
6867eqcomd 2735 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺)
6965, 68eqtrd 2764 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cin 3910  wss 3911  c0 4292  {csn 4585  {cpr 4587   class class class wbr 5102  cmpt 5183  ran crn 5632  cres 5633  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  +crp 12927  (,)cioo 13282  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  Topctop 22756  intcnt 22880   D cdv 25740  logclog 26439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441
This theorem is referenced by:  dvrelog2b  42027
  Copyright terms: Public domain W3C validator