MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slelss Structured version   Visualization version   GIF version

Theorem slelss 27842
Description: If two surreals 𝐴 and 𝐵 share a birthday, then 𝐴 ≤s 𝐵 if and only if the left set of 𝐴 is a non-strict subset of the left set of 𝐵. (Contributed by Scott Fenton, 21-Mar-2025.)
Assertion
Ref Expression
slelss ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))

Proof of Theorem slelss
StepHypRef Expression
1 sltlpss 27841 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ( L ‘𝐴) ⊊ ( L ‘𝐵)))
2 fveq2 6826 . . . 4 (𝐴 = 𝐵 → ( L ‘𝐴) = ( L ‘𝐵))
3 simpr 484 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
4 lruneq 27840 . . . . . . . . . 10 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
54adantr 480 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
65, 3difeq12d 4080 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)))
7 difundir 4244 . . . . . . . . . 10 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
8 difid 4329 . . . . . . . . . . 11 (( L ‘𝐴) ∖ ( L ‘𝐴)) = ∅
98uneq1i 4117 . . . . . . . . . 10 ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
10 0un 4349 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (( R ‘𝐴) ∖ ( L ‘𝐴))
117, 9, 103eqtri 2756 . . . . . . . . 9 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = (( R ‘𝐴) ∖ ( L ‘𝐴))
12 incom 4162 . . . . . . . . . . 11 (( L ‘𝐴) ∩ ( R ‘𝐴)) = (( R ‘𝐴) ∩ ( L ‘𝐴))
13 lltropt 27805 . . . . . . . . . . . 12 ( L ‘𝐴) <<s ( R ‘𝐴)
14 ssltdisj 27753 . . . . . . . . . . . 12 (( L ‘𝐴) <<s ( R ‘𝐴) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1513, 14mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1612, 15eqtr3id 2778 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅)
17 disjdif2 4433 . . . . . . . . . 10 ((( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅ → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1911, 18eqtrid 2776 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
20 difundir 4244 . . . . . . . . . 10 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
21 difid 4329 . . . . . . . . . . 11 (( L ‘𝐵) ∖ ( L ‘𝐵)) = ∅
2221uneq1i 4117 . . . . . . . . . 10 ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
23 0un 4349 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (( R ‘𝐵) ∖ ( L ‘𝐵))
2420, 22, 233eqtri 2756 . . . . . . . . 9 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = (( R ‘𝐵) ∖ ( L ‘𝐵))
25 incom 4162 . . . . . . . . . . 11 (( L ‘𝐵) ∩ ( R ‘𝐵)) = (( R ‘𝐵) ∩ ( L ‘𝐵))
26 lltropt 27805 . . . . . . . . . . . 12 ( L ‘𝐵) <<s ( R ‘𝐵)
27 ssltdisj 27753 . . . . . . . . . . . 12 (( L ‘𝐵) <<s ( R ‘𝐵) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2826, 27mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2925, 28eqtr3id 2778 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅)
30 disjdif2 4433 . . . . . . . . . 10 ((( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅ → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3129, 30syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3224, 31eqtrid 2776 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
336, 19, 323eqtr3d 2772 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( R ‘𝐴) = ( R ‘𝐵))
343, 33oveq12d 7371 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = (( L ‘𝐵) |s ( R ‘𝐵)))
35 simpl1 1192 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 No )
36 lrcut 27837 . . . . . . 7 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
3735, 36syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
38 simpl2 1193 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐵 No )
39 lrcut 27837 . . . . . . 7 (𝐵 No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4038, 39syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4134, 37, 403eqtr3d 2772 . . . . 5 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 = 𝐵)
4241ex 412 . . . 4 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) = ( L ‘𝐵) → 𝐴 = 𝐵))
432, 42impbid2 226 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 = 𝐵 ↔ ( L ‘𝐴) = ( L ‘𝐵)))
441, 43orbi12d 918 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
45 sleloe 27683 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
46453adant3 1132 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
47 sspss 4055 . . 3 (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵)))
4847a1i 11 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
4944, 46, 483bitr4d 311 1 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  cun 3903  cin 3904  wss 3905  wpss 3906  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353   No csur 27568   <s cslt 27569   bday cbday 27570   ≤s csle 27673   <<s csslt 27710   |s cscut 27712   L cleft 27774   R cright 27775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-no 27571  df-slt 27572  df-bday 27573  df-sle 27674  df-sslt 27711  df-scut 27713  df-made 27776  df-old 27777  df-left 27779  df-right 27780
This theorem is referenced by:  sltonold  28186  onnolt  28191
  Copyright terms: Public domain W3C validator