Step | Hyp | Ref
| Expression |
1 | | sltlpss 27638 |
. . 3
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â (ðī <s ðĩ â ( L âðī) â ( L âðĩ))) |
2 | | fveq2 6890 |
. . . 4
âĒ (ðī = ðĩ â ( L âðī) = ( L âðĩ)) |
3 | | simpr 483 |
. . . . . . 7
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ( L âðī) = ( L âðĩ)) |
4 | | lruneq 27637 |
. . . . . . . . . 10
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â (( L âðī) ⊠( R âðī)) = (( L âðĩ) ⊠( R âðĩ))) |
5 | 4 | adantr 479 |
. . . . . . . . 9
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( L âðī) ⊠( R âðī)) = (( L âðĩ) ⊠( R âðĩ))) |
6 | 5, 3 | difeq12d 4122 |
. . . . . . . 8
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ((( L âðī) ⊠( R âðī)) â ( L âðī)) = ((( L âðĩ) ⊠( R âðĩ)) â ( L âðĩ))) |
7 | | difundir 4279 |
. . . . . . . . . 10
âĒ ((( L
âðī) ⊠( R
âðī)) â ( L
âðī)) = ((( L
âðī) â ( L
âðī)) ⊠(( R
âðī) â ( L
âðī))) |
8 | | difid 4369 |
. . . . . . . . . . 11
âĒ (( L
âðī) â ( L
âðī)) =
â
|
9 | 8 | uneq1i 4158 |
. . . . . . . . . 10
âĒ ((( L
âðī) â ( L
âðī)) ⊠(( R
âðī) â ( L
âðī))) = (â
⊠(( R âðī)
â ( L âðī))) |
10 | | 0un 4391 |
. . . . . . . . . 10
âĒ (â
⊠(( R âðī)
â ( L âðī))) =
(( R âðī) â ( L
âðī)) |
11 | 7, 9, 10 | 3eqtri 2762 |
. . . . . . . . 9
âĒ ((( L
âðī) ⊠( R
âðī)) â ( L
âðī)) = (( R
âðī) â ( L
âðī)) |
12 | | incom 4200 |
. . . . . . . . . . 11
âĒ (( L
âðī) âĐ ( R
âðī)) = (( R
âðī) âĐ ( L
âðī)) |
13 | | lltropt 27604 |
. . . . . . . . . . . 12
âĒ ( L
âðī) <<s ( R
âðī) |
14 | | ssltdisj 27559 |
. . . . . . . . . . . 12
âĒ (( L
âðī) <<s ( R
âðī) â (( L
âðī) âĐ ( R
âðī)) =
â
) |
15 | 13, 14 | mp1i 13 |
. . . . . . . . . . 11
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( L âðī) âĐ ( R âðī)) = â
) |
16 | 12, 15 | eqtr3id 2784 |
. . . . . . . . . 10
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( R âðī) âĐ ( L âðī)) = â
) |
17 | | disjdif2 4478 |
. . . . . . . . . 10
âĒ ((( R
âðī) âĐ ( L
âðī)) = â
â
(( R âðī) â ( L
âðī)) = ( R
âðī)) |
18 | 16, 17 | syl 17 |
. . . . . . . . 9
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( R âðī) â ( L âðī)) = ( R âðī)) |
19 | 11, 18 | eqtrid 2782 |
. . . . . . . 8
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ((( L âðī) ⊠( R âðī)) â ( L âðī)) = ( R âðī)) |
20 | | difundir 4279 |
. . . . . . . . . 10
âĒ ((( L
âðĩ) ⊠( R
âðĩ)) â ( L
âðĩ)) = ((( L
âðĩ) â ( L
âðĩ)) ⊠(( R
âðĩ) â ( L
âðĩ))) |
21 | | difid 4369 |
. . . . . . . . . . 11
âĒ (( L
âðĩ) â ( L
âðĩ)) =
â
|
22 | 21 | uneq1i 4158 |
. . . . . . . . . 10
âĒ ((( L
âðĩ) â ( L
âðĩ)) ⊠(( R
âðĩ) â ( L
âðĩ))) = (â
⊠(( R âðĩ)
â ( L âðĩ))) |
23 | | 0un 4391 |
. . . . . . . . . 10
âĒ (â
⊠(( R âðĩ)
â ( L âðĩ))) =
(( R âðĩ) â ( L
âðĩ)) |
24 | 20, 22, 23 | 3eqtri 2762 |
. . . . . . . . 9
âĒ ((( L
âðĩ) ⊠( R
âðĩ)) â ( L
âðĩ)) = (( R
âðĩ) â ( L
âðĩ)) |
25 | | incom 4200 |
. . . . . . . . . . 11
âĒ (( L
âðĩ) âĐ ( R
âðĩ)) = (( R
âðĩ) âĐ ( L
âðĩ)) |
26 | | lltropt 27604 |
. . . . . . . . . . . 12
âĒ ( L
âðĩ) <<s ( R
âðĩ) |
27 | | ssltdisj 27559 |
. . . . . . . . . . . 12
âĒ (( L
âðĩ) <<s ( R
âðĩ) â (( L
âðĩ) âĐ ( R
âðĩ)) =
â
) |
28 | 26, 27 | mp1i 13 |
. . . . . . . . . . 11
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( L âðĩ) âĐ ( R âðĩ)) = â
) |
29 | 25, 28 | eqtr3id 2784 |
. . . . . . . . . 10
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( R âðĩ) âĐ ( L âðĩ)) = â
) |
30 | | disjdif2 4478 |
. . . . . . . . . 10
âĒ ((( R
âðĩ) âĐ ( L
âðĩ)) = â
â
(( R âðĩ) â ( L
âðĩ)) = ( R
âðĩ)) |
31 | 29, 30 | syl 17 |
. . . . . . . . 9
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( R âðĩ) â ( L âðĩ)) = ( R âðĩ)) |
32 | 24, 31 | eqtrid 2782 |
. . . . . . . 8
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ((( L âðĩ) ⊠( R âðĩ)) â ( L âðĩ)) = ( R âðĩ)) |
33 | 6, 19, 32 | 3eqtr3d 2778 |
. . . . . . 7
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ( R âðī) = ( R âðĩ)) |
34 | 3, 33 | oveq12d 7429 |
. . . . . 6
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( L âðī) |s ( R âðī)) = (( L âðĩ) |s ( R âðĩ))) |
35 | | simpl1 1189 |
. . . . . . 7
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ðī â No
) |
36 | | lrcut 27634 |
. . . . . . 7
âĒ (ðī â
No â (( L âðī) |s ( R âðī)) = ðī) |
37 | 35, 36 | syl 17 |
. . . . . 6
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( L âðī) |s ( R âðī)) = ðī) |
38 | | simpl2 1190 |
. . . . . . 7
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ðĩ â No
) |
39 | | lrcut 27634 |
. . . . . . 7
âĒ (ðĩ â
No â (( L âðĩ) |s ( R âðĩ)) = ðĩ) |
40 | 38, 39 | syl 17 |
. . . . . 6
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â (( L âðĩ) |s ( R âðĩ)) = ðĩ) |
41 | 34, 37, 40 | 3eqtr3d 2778 |
. . . . 5
âĒ (((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) ⧠( L âðī) = ( L âðĩ)) â ðī = ðĩ) |
42 | 41 | ex 411 |
. . . 4
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â (( L âðī) = ( L âðĩ) â ðī = ðĩ)) |
43 | 2, 42 | impbid2 225 |
. . 3
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â (ðī = ðĩ â ( L âðī) = ( L âðĩ))) |
44 | 1, 43 | orbi12d 915 |
. 2
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â ((ðī <s ðĩ âĻ ðī = ðĩ) â (( L âðī) â ( L âðĩ) âĻ ( L âðī) = ( L âðĩ)))) |
45 | | sleloe 27493 |
. . 3
âĒ ((ðī â
No ⧠ðĩ â
No ) â (ðī âĪs ðĩ â (ðī <s ðĩ âĻ ðī = ðĩ))) |
46 | 45 | 3adant3 1130 |
. 2
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â (ðī âĪs ðĩ â (ðī <s ðĩ âĻ ðī = ðĩ))) |
47 | | sspss 4098 |
. . 3
âĒ (( L
âðī) â ( L
âðĩ) â (( L
âðī) â ( L
âðĩ) âĻ ( L
âðī) = ( L
âðĩ))) |
48 | 47 | a1i 11 |
. 2
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â (( L âðī) â ( L âðĩ) â (( L âðī) â ( L âðĩ) âĻ ( L âðī) = ( L âðĩ)))) |
49 | 44, 46, 48 | 3bitr4d 310 |
1
âĒ ((ðī â
No ⧠ðĩ â
No ⧠( bday
âðī) = ( bday âðĩ)) â (ðī âĪs ðĩ â ( L âðī) â ( L âðĩ))) |