MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slelss Structured version   Visualization version   GIF version

Theorem slelss 27820
Description: If two surreals 𝐴 and 𝐵 share a birthday, then 𝐴 ≤s 𝐵 if and only if the left set of 𝐴 is a non-strict subset of the left set of 𝐵. (Contributed by Scott Fenton, 21-Mar-2025.)
Assertion
Ref Expression
slelss ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))

Proof of Theorem slelss
StepHypRef Expression
1 sltlpss 27819 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ( L ‘𝐴) ⊊ ( L ‘𝐵)))
2 fveq2 6858 . . . 4 (𝐴 = 𝐵 → ( L ‘𝐴) = ( L ‘𝐵))
3 simpr 484 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
4 lruneq 27818 . . . . . . . . . 10 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
54adantr 480 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
65, 3difeq12d 4090 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)))
7 difundir 4254 . . . . . . . . . 10 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
8 difid 4339 . . . . . . . . . . 11 (( L ‘𝐴) ∖ ( L ‘𝐴)) = ∅
98uneq1i 4127 . . . . . . . . . 10 ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
10 0un 4359 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (( R ‘𝐴) ∖ ( L ‘𝐴))
117, 9, 103eqtri 2756 . . . . . . . . 9 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = (( R ‘𝐴) ∖ ( L ‘𝐴))
12 incom 4172 . . . . . . . . . . 11 (( L ‘𝐴) ∩ ( R ‘𝐴)) = (( R ‘𝐴) ∩ ( L ‘𝐴))
13 lltropt 27784 . . . . . . . . . . . 12 ( L ‘𝐴) <<s ( R ‘𝐴)
14 ssltdisj 27733 . . . . . . . . . . . 12 (( L ‘𝐴) <<s ( R ‘𝐴) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1513, 14mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1612, 15eqtr3id 2778 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅)
17 disjdif2 4443 . . . . . . . . . 10 ((( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅ → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1911, 18eqtrid 2776 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
20 difundir 4254 . . . . . . . . . 10 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
21 difid 4339 . . . . . . . . . . 11 (( L ‘𝐵) ∖ ( L ‘𝐵)) = ∅
2221uneq1i 4127 . . . . . . . . . 10 ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
23 0un 4359 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (( R ‘𝐵) ∖ ( L ‘𝐵))
2420, 22, 233eqtri 2756 . . . . . . . . 9 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = (( R ‘𝐵) ∖ ( L ‘𝐵))
25 incom 4172 . . . . . . . . . . 11 (( L ‘𝐵) ∩ ( R ‘𝐵)) = (( R ‘𝐵) ∩ ( L ‘𝐵))
26 lltropt 27784 . . . . . . . . . . . 12 ( L ‘𝐵) <<s ( R ‘𝐵)
27 ssltdisj 27733 . . . . . . . . . . . 12 (( L ‘𝐵) <<s ( R ‘𝐵) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2826, 27mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2925, 28eqtr3id 2778 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅)
30 disjdif2 4443 . . . . . . . . . 10 ((( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅ → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3129, 30syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3224, 31eqtrid 2776 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
336, 19, 323eqtr3d 2772 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( R ‘𝐴) = ( R ‘𝐵))
343, 33oveq12d 7405 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = (( L ‘𝐵) |s ( R ‘𝐵)))
35 simpl1 1192 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 No )
36 lrcut 27815 . . . . . . 7 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
3735, 36syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
38 simpl2 1193 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐵 No )
39 lrcut 27815 . . . . . . 7 (𝐵 No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4038, 39syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4134, 37, 403eqtr3d 2772 . . . . 5 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 = 𝐵)
4241ex 412 . . . 4 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) = ( L ‘𝐵) → 𝐴 = 𝐵))
432, 42impbid2 226 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 = 𝐵 ↔ ( L ‘𝐴) = ( L ‘𝐵)))
441, 43orbi12d 918 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
45 sleloe 27666 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
46453adant3 1132 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
47 sspss 4065 . . 3 (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵)))
4847a1i 11 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
4944, 46, 483bitr4d 311 1 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cin 3913  wss 3914  wpss 3915  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   <s cslt 27552   bday cbday 27553   ≤s csle 27656   <<s csslt 27692   |s cscut 27694   L cleft 27753   R cright 27754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-made 27755  df-old 27756  df-left 27758  df-right 27759
This theorem is referenced by:  sltonold  28162  onnolt  28167
  Copyright terms: Public domain W3C validator