MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slelss Structured version   Visualization version   GIF version

Theorem slelss 27849
Description: If two surreals 𝐴 and 𝐵 share a birthday, then 𝐴 ≤s 𝐵 if and only if the left set of 𝐴 is a non-strict subset of the left set of 𝐵. (Contributed by Scott Fenton, 21-Mar-2025.)
Assertion
Ref Expression
slelss ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))

Proof of Theorem slelss
StepHypRef Expression
1 sltlpss 27848 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ( L ‘𝐴) ⊊ ( L ‘𝐵)))
2 fveq2 6817 . . . 4 (𝐴 = 𝐵 → ( L ‘𝐴) = ( L ‘𝐵))
3 simpr 484 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
4 lruneq 27847 . . . . . . . . . 10 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
54adantr 480 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
65, 3difeq12d 4072 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)))
7 difundir 4236 . . . . . . . . . 10 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
8 difid 4321 . . . . . . . . . . 11 (( L ‘𝐴) ∖ ( L ‘𝐴)) = ∅
98uneq1i 4109 . . . . . . . . . 10 ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
10 0un 4341 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (( R ‘𝐴) ∖ ( L ‘𝐴))
117, 9, 103eqtri 2758 . . . . . . . . 9 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = (( R ‘𝐴) ∖ ( L ‘𝐴))
12 incom 4154 . . . . . . . . . . 11 (( L ‘𝐴) ∩ ( R ‘𝐴)) = (( R ‘𝐴) ∩ ( L ‘𝐴))
13 lltropt 27812 . . . . . . . . . . . 12 ( L ‘𝐴) <<s ( R ‘𝐴)
14 ssltdisj 27759 . . . . . . . . . . . 12 (( L ‘𝐴) <<s ( R ‘𝐴) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1513, 14mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1612, 15eqtr3id 2780 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅)
17 disjdif2 4425 . . . . . . . . . 10 ((( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅ → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1911, 18eqtrid 2778 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
20 difundir 4236 . . . . . . . . . 10 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
21 difid 4321 . . . . . . . . . . 11 (( L ‘𝐵) ∖ ( L ‘𝐵)) = ∅
2221uneq1i 4109 . . . . . . . . . 10 ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
23 0un 4341 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (( R ‘𝐵) ∖ ( L ‘𝐵))
2420, 22, 233eqtri 2758 . . . . . . . . 9 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = (( R ‘𝐵) ∖ ( L ‘𝐵))
25 incom 4154 . . . . . . . . . . 11 (( L ‘𝐵) ∩ ( R ‘𝐵)) = (( R ‘𝐵) ∩ ( L ‘𝐵))
26 lltropt 27812 . . . . . . . . . . . 12 ( L ‘𝐵) <<s ( R ‘𝐵)
27 ssltdisj 27759 . . . . . . . . . . . 12 (( L ‘𝐵) <<s ( R ‘𝐵) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2826, 27mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2925, 28eqtr3id 2780 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅)
30 disjdif2 4425 . . . . . . . . . 10 ((( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅ → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3129, 30syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3224, 31eqtrid 2778 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
336, 19, 323eqtr3d 2774 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( R ‘𝐴) = ( R ‘𝐵))
343, 33oveq12d 7359 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = (( L ‘𝐵) |s ( R ‘𝐵)))
35 simpl1 1192 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 No )
36 lrcut 27844 . . . . . . 7 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
3735, 36syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
38 simpl2 1193 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐵 No )
39 lrcut 27844 . . . . . . 7 (𝐵 No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4038, 39syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4134, 37, 403eqtr3d 2774 . . . . 5 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 = 𝐵)
4241ex 412 . . . 4 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) = ( L ‘𝐵) → 𝐴 = 𝐵))
432, 42impbid2 226 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 = 𝐵 ↔ ( L ‘𝐴) = ( L ‘𝐵)))
441, 43orbi12d 918 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
45 sleloe 27688 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
46453adant3 1132 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
47 sspss 4047 . . 3 (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵)))
4847a1i 11 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
4944, 46, 483bitr4d 311 1 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cdif 3894  cun 3895  cin 3896  wss 3897  wpss 3898  c0 4278   class class class wbr 5086  cfv 6476  (class class class)co 7341   No csur 27573   <s cslt 27574   bday cbday 27575   ≤s csle 27678   <<s csslt 27715   |s cscut 27717   L cleft 27781   R cright 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-no 27576  df-slt 27577  df-bday 27578  df-sle 27679  df-sslt 27716  df-scut 27718  df-made 27783  df-old 27784  df-left 27786  df-right 27787
This theorem is referenced by:  sltonold  28193  onnolt  28198
  Copyright terms: Public domain W3C validator