MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slelss Structured version   Visualization version   GIF version

Theorem slelss 27961
Description: If two surreals 𝐴 and 𝐵 share a birthday, then 𝐴 ≤s 𝐵 if and only if the left set of 𝐴 is a non-strict subset of the left set of 𝐵. (Contributed by Scott Fenton, 21-Mar-2025.)
Assertion
Ref Expression
slelss ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))

Proof of Theorem slelss
StepHypRef Expression
1 sltlpss 27960 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ( L ‘𝐴) ⊊ ( L ‘𝐵)))
2 fveq2 6907 . . . 4 (𝐴 = 𝐵 → ( L ‘𝐴) = ( L ‘𝐵))
3 simpr 484 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
4 lruneq 27959 . . . . . . . . . 10 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
54adantr 480 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
65, 3difeq12d 4137 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)))
7 difundir 4297 . . . . . . . . . 10 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
8 difid 4382 . . . . . . . . . . 11 (( L ‘𝐴) ∖ ( L ‘𝐴)) = ∅
98uneq1i 4174 . . . . . . . . . 10 ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
10 0un 4402 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (( R ‘𝐴) ∖ ( L ‘𝐴))
117, 9, 103eqtri 2767 . . . . . . . . 9 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = (( R ‘𝐴) ∖ ( L ‘𝐴))
12 incom 4217 . . . . . . . . . . 11 (( L ‘𝐴) ∩ ( R ‘𝐴)) = (( R ‘𝐴) ∩ ( L ‘𝐴))
13 lltropt 27926 . . . . . . . . . . . 12 ( L ‘𝐴) <<s ( R ‘𝐴)
14 ssltdisj 27881 . . . . . . . . . . . 12 (( L ‘𝐴) <<s ( R ‘𝐴) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1513, 14mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1612, 15eqtr3id 2789 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅)
17 disjdif2 4486 . . . . . . . . . 10 ((( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅ → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1911, 18eqtrid 2787 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
20 difundir 4297 . . . . . . . . . 10 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
21 difid 4382 . . . . . . . . . . 11 (( L ‘𝐵) ∖ ( L ‘𝐵)) = ∅
2221uneq1i 4174 . . . . . . . . . 10 ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
23 0un 4402 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (( R ‘𝐵) ∖ ( L ‘𝐵))
2420, 22, 233eqtri 2767 . . . . . . . . 9 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = (( R ‘𝐵) ∖ ( L ‘𝐵))
25 incom 4217 . . . . . . . . . . 11 (( L ‘𝐵) ∩ ( R ‘𝐵)) = (( R ‘𝐵) ∩ ( L ‘𝐵))
26 lltropt 27926 . . . . . . . . . . . 12 ( L ‘𝐵) <<s ( R ‘𝐵)
27 ssltdisj 27881 . . . . . . . . . . . 12 (( L ‘𝐵) <<s ( R ‘𝐵) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2826, 27mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2925, 28eqtr3id 2789 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅)
30 disjdif2 4486 . . . . . . . . . 10 ((( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅ → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3129, 30syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3224, 31eqtrid 2787 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
336, 19, 323eqtr3d 2783 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( R ‘𝐴) = ( R ‘𝐵))
343, 33oveq12d 7449 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = (( L ‘𝐵) |s ( R ‘𝐵)))
35 simpl1 1190 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 No )
36 lrcut 27956 . . . . . . 7 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
3735, 36syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
38 simpl2 1191 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐵 No )
39 lrcut 27956 . . . . . . 7 (𝐵 No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4038, 39syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4134, 37, 403eqtr3d 2783 . . . . 5 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 = 𝐵)
4241ex 412 . . . 4 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) = ( L ‘𝐵) → 𝐴 = 𝐵))
432, 42impbid2 226 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 = 𝐵 ↔ ( L ‘𝐴) = ( L ‘𝐵)))
441, 43orbi12d 918 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
45 sleloe 27814 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
46453adant3 1131 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
47 sspss 4112 . . 3 (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵)))
4847a1i 11 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
4944, 46, 483bitr4d 311 1 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  cdif 3960  cun 3961  cin 3962  wss 3963  wpss 3964  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431   No csur 27699   <s cslt 27700   bday cbday 27701   ≤s csle 27804   <<s csslt 27840   |s cscut 27842   L cleft 27899   R cright 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-made 27901  df-old 27902  df-left 27904  df-right 27905
This theorem is referenced by:  sltonold  28298
  Copyright terms: Public domain W3C validator