MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slelss Structured version   Visualization version   GIF version

Theorem slelss 27880
Description: If two surreals 𝐴 and 𝐵 share a birthday, then 𝐴 ≤s 𝐵 if and only if the left set of 𝐴 is a non-strict subset of the left set of 𝐵. (Contributed by Scott Fenton, 21-Mar-2025.)
Assertion
Ref Expression
slelss ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))

Proof of Theorem slelss
StepHypRef Expression
1 sltlpss 27879 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ( L ‘𝐴) ⊊ ( L ‘𝐵)))
2 fveq2 6896 . . . 4 (𝐴 = 𝐵 → ( L ‘𝐴) = ( L ‘𝐵))
3 simpr 483 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
4 lruneq 27878 . . . . . . . . . 10 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
54adantr 479 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
65, 3difeq12d 4119 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)))
7 difundir 4279 . . . . . . . . . 10 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
8 difid 4372 . . . . . . . . . . 11 (( L ‘𝐴) ∖ ( L ‘𝐴)) = ∅
98uneq1i 4156 . . . . . . . . . 10 ((( L ‘𝐴) ∖ ( L ‘𝐴)) ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴)))
10 0un 4394 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐴) ∖ ( L ‘𝐴))) = (( R ‘𝐴) ∖ ( L ‘𝐴))
117, 9, 103eqtri 2757 . . . . . . . . 9 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = (( R ‘𝐴) ∖ ( L ‘𝐴))
12 incom 4199 . . . . . . . . . . 11 (( L ‘𝐴) ∩ ( R ‘𝐴)) = (( R ‘𝐴) ∩ ( L ‘𝐴))
13 lltropt 27845 . . . . . . . . . . . 12 ( L ‘𝐴) <<s ( R ‘𝐴)
14 ssltdisj 27800 . . . . . . . . . . . 12 (( L ‘𝐴) <<s ( R ‘𝐴) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1513, 14mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) ∩ ( R ‘𝐴)) = ∅)
1612, 15eqtr3id 2779 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅)
17 disjdif2 4481 . . . . . . . . . 10 ((( R ‘𝐴) ∩ ( L ‘𝐴)) = ∅ → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐴) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
1911, 18eqtrid 2777 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∖ ( L ‘𝐴)) = ( R ‘𝐴))
20 difundir 4279 . . . . . . . . . 10 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
21 difid 4372 . . . . . . . . . . 11 (( L ‘𝐵) ∖ ( L ‘𝐵)) = ∅
2221uneq1i 4156 . . . . . . . . . 10 ((( L ‘𝐵) ∖ ( L ‘𝐵)) ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵)))
23 0un 4394 . . . . . . . . . 10 (∅ ∪ (( R ‘𝐵) ∖ ( L ‘𝐵))) = (( R ‘𝐵) ∖ ( L ‘𝐵))
2420, 22, 233eqtri 2757 . . . . . . . . 9 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = (( R ‘𝐵) ∖ ( L ‘𝐵))
25 incom 4199 . . . . . . . . . . 11 (( L ‘𝐵) ∩ ( R ‘𝐵)) = (( R ‘𝐵) ∩ ( L ‘𝐵))
26 lltropt 27845 . . . . . . . . . . . 12 ( L ‘𝐵) <<s ( R ‘𝐵)
27 ssltdisj 27800 . . . . . . . . . . . 12 (( L ‘𝐵) <<s ( R ‘𝐵) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2826, 27mp1i 13 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) ∩ ( R ‘𝐵)) = ∅)
2925, 28eqtr3id 2779 . . . . . . . . . 10 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅)
30 disjdif2 4481 . . . . . . . . . 10 ((( R ‘𝐵) ∩ ( L ‘𝐵)) = ∅ → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3129, 30syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( R ‘𝐵) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
3224, 31eqtrid 2777 . . . . . . . 8 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∖ ( L ‘𝐵)) = ( R ‘𝐵))
336, 19, 323eqtr3d 2773 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → ( R ‘𝐴) = ( R ‘𝐵))
343, 33oveq12d 7437 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = (( L ‘𝐵) |s ( R ‘𝐵)))
35 simpl1 1188 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 No )
36 lrcut 27875 . . . . . . 7 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
3735, 36syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
38 simpl2 1189 . . . . . . 7 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐵 No )
39 lrcut 27875 . . . . . . 7 (𝐵 No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4038, 39syl 17 . . . . . 6 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
4134, 37, 403eqtr3d 2773 . . . . 5 (((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) ∧ ( L ‘𝐴) = ( L ‘𝐵)) → 𝐴 = 𝐵)
4241ex 411 . . . 4 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) = ( L ‘𝐵) → 𝐴 = 𝐵))
432, 42impbid2 225 . . 3 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 = 𝐵 ↔ ( L ‘𝐴) = ( L ‘𝐵)))
441, 43orbi12d 916 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → ((𝐴 <s 𝐵𝐴 = 𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
45 sleloe 27733 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
46453adant3 1129 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
47 sspss 4095 . . 3 (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵)))
4847a1i 11 . 2 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) ⊆ ( L ‘𝐵) ↔ (( L ‘𝐴) ⊊ ( L ‘𝐵) ∨ ( L ‘𝐴) = ( L ‘𝐵))))
4944, 46, 483bitr4d 310 1 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  cdif 3941  cun 3942  cin 3943  wss 3944  wpss 3945  c0 4322   class class class wbr 5149  cfv 6549  (class class class)co 7419   No csur 27618   <s cslt 27619   bday cbday 27620   ≤s csle 27723   <<s csslt 27759   |s cscut 27761   L cleft 27818   R cright 27819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-made 27820  df-old 27821  df-left 27823  df-right 27824
This theorem is referenced by:  sltonold  28203
  Copyright terms: Public domain W3C validator