Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrelog2 | Structured version Visualization version GIF version |
Description: The derivative of the logarithm, ftc2 25113 version. (Contributed by metakunt, 11-Aug-2024.) |
Ref | Expression |
---|---|
dvrelog2.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvrelog2.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvrelog2.3 | ⊢ (𝜑 → 0 < 𝐴) |
dvrelog2.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
dvrelog2.5 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) |
dvrelog2.6 | ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) |
Ref | Expression |
---|---|
dvrelog2 | ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrelog2.5 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) |
3 | 2 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)))) |
4 | reelprrecn 10894 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
6 | rpssre 12666 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
7 | ax-resscn 10859 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
8 | 6, 7 | sstri 3926 | . . . . . . 7 ⊢ ℝ+ ⊆ ℂ |
9 | 8 | sseli 3913 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
11 | rpne0 12675 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
13 | 10, 12 | logcld 25631 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
14 | 1red 10907 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 1 ∈ ℝ) | |
15 | 6 | sseli 3913 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) |
16 | 14, 15, 11 | redivcld 11733 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ) |
17 | 16 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ) |
18 | logf1o 25625 | . . . . . . . . . 10 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
19 | f1of 6700 | . . . . . . . . . 10 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
20 | 18, 19 | ax-mp 5 | . . . . . . . . 9 ⊢ log:(ℂ ∖ {0})⟶ran log |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → log:(ℂ ∖ {0})⟶ran log) |
22 | 0nrp 12694 | . . . . . . . . . . . 12 ⊢ ¬ 0 ∈ ℝ+ | |
23 | disjsn 4644 | . . . . . . . . . . . 12 ⊢ ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+) | |
24 | 22, 23 | mpbir 230 | . . . . . . . . . . 11 ⊢ (ℝ+ ∩ {0}) = ∅ |
25 | disjdif2 4410 | . . . . . . . . . . 11 ⊢ ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) = ℝ+ |
27 | ssdif 4070 | . . . . . . . . . . 11 ⊢ (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})) | |
28 | 8, 27 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}) |
29 | 26, 28 | eqsstrri 3952 | . . . . . . . . 9 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
30 | 29 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ+ ⊆ (ℂ ∖ {0})) |
31 | 21, 30 | feqresmpt 6820 | . . . . . . 7 ⊢ (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
32 | 31 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+)) |
33 | 32 | oveq2d 7271 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+))) |
34 | dvrelog 25697 | . . . . . 6 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
36 | 33, 35 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
37 | dvrelog2.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
38 | dvrelog2.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
39 | elicc2 13073 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) | |
40 | 37, 38, 39 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
41 | 40 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
42 | 41 | simp1d 1140 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ) |
43 | 0red 10909 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ) | |
44 | 37 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
45 | dvrelog2.3 | . . . . . . . . . 10 ⊢ (𝜑 → 0 < 𝐴) | |
46 | 45 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝐴) |
47 | 41 | simp2d 1141 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑦) |
48 | 43, 44, 42, 46, 47 | ltletrd 11065 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝑦) |
49 | 42, 48 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦)) |
50 | elrp 12661 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) | |
51 | 49, 50 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ+) |
52 | 51 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ+)) |
53 | 52 | ssrdv 3923 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+) |
54 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
55 | 54 | tgioo2 23872 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
56 | iccntr 23890 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
57 | 37, 38, 56 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
58 | 5, 13, 17, 36, 53, 55, 54, 57 | dvmptres2 25031 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
59 | 3, 58 | eqtrd 2778 | . 2 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
60 | dvrelog2.6 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) | |
61 | 60 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
62 | 61 | eqcomd 2744 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺) |
63 | 59, 62 | eqtrd 2778 | 1 ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 < clt 10940 ≤ cle 10941 / cdiv 11562 ℝ+crp 12659 (,)cioo 13008 [,]cicc 13011 TopOpenctopn 17049 topGenctg 17065 ℂfldccnfld 20510 intcnt 22076 D cdv 24932 logclog 25615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |