| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrelog2 | Structured version Visualization version GIF version | ||
| Description: The derivative of the logarithm, ftc2 25958 version. (Contributed by metakunt, 11-Aug-2024.) |
| Ref | Expression |
|---|---|
| dvrelog2.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvrelog2.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvrelog2.3 | ⊢ (𝜑 → 0 < 𝐴) |
| dvrelog2.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| dvrelog2.5 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) |
| dvrelog2.6 | ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) |
| Ref | Expression |
|---|---|
| dvrelog2 | ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrelog2.5 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) |
| 3 | 2 | oveq2d 7406 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)))) |
| 4 | reelprrecn 11167 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 6 | rpssre 12966 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
| 7 | ax-resscn 11132 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 8 | 6, 7 | sstri 3959 | . . . . . . 7 ⊢ ℝ+ ⊆ ℂ |
| 9 | 8 | sseli 3945 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
| 11 | rpne0 12975 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
| 13 | 10, 12 | logcld 26486 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
| 14 | 1red 11182 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 1 ∈ ℝ) | |
| 15 | 6 | sseli 3945 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) |
| 16 | 14, 15, 11 | redivcld 12017 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ) |
| 17 | 16 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ) |
| 18 | logf1o 26480 | . . . . . . . . . 10 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
| 19 | f1of 6803 | . . . . . . . . . 10 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . . . . 9 ⊢ log:(ℂ ∖ {0})⟶ran log |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → log:(ℂ ∖ {0})⟶ran log) |
| 22 | 0nrp 12995 | . . . . . . . . . . . 12 ⊢ ¬ 0 ∈ ℝ+ | |
| 23 | disjsn 4678 | . . . . . . . . . . . 12 ⊢ ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+) | |
| 24 | 22, 23 | mpbir 231 | . . . . . . . . . . 11 ⊢ (ℝ+ ∩ {0}) = ∅ |
| 25 | disjdif2 4446 | . . . . . . . . . . 11 ⊢ ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) = ℝ+ |
| 27 | ssdif 4110 | . . . . . . . . . . 11 ⊢ (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})) | |
| 28 | 8, 27 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}) |
| 29 | 26, 28 | eqsstrri 3997 | . . . . . . . . 9 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
| 30 | 29 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ+ ⊆ (ℂ ∖ {0})) |
| 31 | 21, 30 | feqresmpt 6933 | . . . . . . 7 ⊢ (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 32 | 31 | eqcomd 2736 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+)) |
| 33 | 32 | oveq2d 7406 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+))) |
| 34 | dvrelog 26553 | . . . . . 6 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 36 | 33, 35 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 37 | dvrelog2.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 38 | dvrelog2.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 39 | elicc2 13379 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) | |
| 40 | 37, 38, 39 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
| 41 | 40 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
| 42 | 41 | simp1d 1142 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ) |
| 43 | 0red 11184 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ) | |
| 44 | 37 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
| 45 | dvrelog2.3 | . . . . . . . . . 10 ⊢ (𝜑 → 0 < 𝐴) | |
| 46 | 45 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝐴) |
| 47 | 41 | simp2d 1143 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑦) |
| 48 | 43, 44, 42, 46, 47 | ltletrd 11341 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝑦) |
| 49 | 42, 48 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦)) |
| 50 | elrp 12960 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) | |
| 51 | 49, 50 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ+) |
| 52 | 51 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ+)) |
| 53 | 52 | ssrdv 3955 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+) |
| 54 | tgioo4 24700 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 55 | eqid 2730 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 56 | iccntr 24717 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
| 57 | 37, 38, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 58 | 5, 13, 17, 36, 53, 54, 55, 57 | dvmptres2 25873 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 59 | 3, 58 | eqtrd 2765 | . 2 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 60 | dvrelog2.6 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) | |
| 61 | 60 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
| 62 | 61 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺) |
| 63 | 59, 62 | eqtrd 2765 | 1 ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 {cpr 4594 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 ↾ cres 5643 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 < clt 11215 ≤ cle 11216 / cdiv 11842 ℝ+crp 12958 (,)cioo 13313 [,]cicc 13316 TopOpenctopn 17391 topGenctg 17407 ℂfldccnfld 21271 intcnt 22911 D cdv 25771 logclog 26470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |