Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelog2 Structured version   Visualization version   GIF version

Theorem dvrelog2 39656
Description: The derivative of the logarithm, ftc2 24748 version. (Contributed by metakunt, 11-Aug-2024.)
Hypotheses
Ref Expression
dvrelog2.1 (𝜑𝐴 ∈ ℝ)
dvrelog2.2 (𝜑𝐵 ∈ ℝ)
dvrelog2.3 (𝜑 → 0 < 𝐴)
dvrelog2.4 (𝜑𝐴𝐵)
dvrelog2.5 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))
dvrelog2.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
Assertion
Ref Expression
dvrelog2 (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelog2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelog2.5 . . . . 5 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))
21a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)))
32oveq2d 7171 . . 3 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))))
4 reelprrecn 10672 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 rpssre 12442 . . . . . . . 8 + ⊆ ℝ
7 ax-resscn 10637 . . . . . . . 8 ℝ ⊆ ℂ
86, 7sstri 3903 . . . . . . 7 + ⊆ ℂ
98sseli 3890 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
109adantl 485 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
11 rpne0 12451 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1211adantl 485 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
1310, 12logcld 25266 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
14 1red 10685 . . . . . 6 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
156sseli 3890 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1614, 15, 11redivcld 11511 . . . . 5 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
1716adantl 485 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
18 logf1o 25260 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
19 f1of 6606 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
2018, 19ax-mp 5 . . . . . . . . 9 log:(ℂ ∖ {0})⟶ran log
2120a1i 11 . . . . . . . 8 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
22 0nrp 12470 . . . . . . . . . . . 12 ¬ 0 ∈ ℝ+
23 disjsn 4607 . . . . . . . . . . . 12 ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+)
2422, 23mpbir 234 . . . . . . . . . . 11 (ℝ+ ∩ {0}) = ∅
25 disjdif2 4379 . . . . . . . . . . 11 ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+)
2624, 25ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) = ℝ+
27 ssdif 4047 . . . . . . . . . . 11 (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}))
288, 27ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})
2926, 28eqsstrri 3929 . . . . . . . . 9 + ⊆ (ℂ ∖ {0})
3029a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
3121, 30feqresmpt 6726 . . . . . . 7 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3231eqcomd 2764 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+))
3332oveq2d 7171 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+)))
34 dvrelog 25332 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
3534a1i 11 . . . . 5 (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
3633, 35eqtrd 2793 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
37 dvrelog2.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
38 dvrelog2.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
39 elicc2 12849 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4037, 38, 39syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4140biimpa 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4241simp1d 1139 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
43 0red 10687 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ)
4437adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
45 dvrelog2.3 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
4645adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝐴)
4741simp2d 1140 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
4843, 44, 42, 46, 47ltletrd 10843 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝑦)
4942, 48jca 515 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
50 elrp 12437 . . . . . . 7 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
5149, 50sylibr 237 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ+)
5251ex 416 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ+))
5352ssrdv 3900 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+)
54 eqid 2758 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5554tgioo2 23509 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
56 iccntr 23527 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5737, 38, 56syl2anc 587 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
585, 13, 17, 36, 53, 55, 54, 57dvmptres2 24666 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
593, 58eqtrd 2793 . 2 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
60 dvrelog2.6 . . . 4 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
6160a1i 11 . . 3 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
6261eqcomd 2764 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺)
6359, 62eqtrd 2793 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  cdif 3857  cin 3859  wss 3860  c0 4227  {csn 4525  {cpr 4527   class class class wbr 5035  cmpt 5115  ran crn 5528  cres 5529  wf 6335  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7155  cc 10578  cr 10579  0cc0 10580  1c1 10581   < clt 10718  cle 10719   / cdiv 11340  +crp 12435  (,)cioo 12784  [,]cicc 12787  TopOpenctopn 16758  topGenctg 16774  fldccnfld 20171  intcnt 21722   D cdv 24567  logclog 25250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-fi 8913  df-sup 8944  df-inf 8945  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-ioo 12788  df-ioc 12789  df-ico 12790  df-icc 12791  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-fac 13689  df-bc 13718  df-hash 13746  df-shft 14479  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-limsup 14881  df-clim 14898  df-rlim 14899  df-sum 15096  df-ef 15474  df-sin 15476  df-cos 15477  df-pi 15479  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-rest 16759  df-topn 16760  df-0g 16778  df-gsum 16779  df-topgen 16780  df-pt 16781  df-prds 16784  df-xrs 16838  df-qtop 16843  df-imas 16844  df-xps 16846  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-mulg 18297  df-cntz 18519  df-cmn 18980  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-fbas 20168  df-fg 20169  df-cnfld 20172  df-top 21599  df-topon 21616  df-topsp 21638  df-bases 21651  df-cld 21724  df-ntr 21725  df-cls 21726  df-nei 21803  df-lp 21841  df-perf 21842  df-cn 21932  df-cnp 21933  df-haus 22020  df-cmp 22092  df-tx 22267  df-hmeo 22460  df-fil 22551  df-fm 22643  df-flim 22644  df-flf 22645  df-xms 23027  df-ms 23028  df-tms 23029  df-cncf 23584  df-limc 24570  df-dv 24571  df-log 25252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator