![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrelog2 | Structured version Visualization version GIF version |
Description: The derivative of the logarithm, ftc2 25408 version. (Contributed by metakunt, 11-Aug-2024.) |
Ref | Expression |
---|---|
dvrelog2.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvrelog2.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvrelog2.3 | ⊢ (𝜑 → 0 < 𝐴) |
dvrelog2.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
dvrelog2.5 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) |
dvrelog2.6 | ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) |
Ref | Expression |
---|---|
dvrelog2 | ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrelog2.5 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) |
3 | 2 | oveq2d 7373 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)))) |
4 | reelprrecn 11143 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
6 | rpssre 12922 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
7 | ax-resscn 11108 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
8 | 6, 7 | sstri 3953 | . . . . . . 7 ⊢ ℝ+ ⊆ ℂ |
9 | 8 | sseli 3940 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
11 | rpne0 12931 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
12 | 11 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
13 | 10, 12 | logcld 25926 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
14 | 1red 11156 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 1 ∈ ℝ) | |
15 | 6 | sseli 3940 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) |
16 | 14, 15, 11 | redivcld 11983 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ) |
17 | 16 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ) |
18 | logf1o 25920 | . . . . . . . . . 10 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
19 | f1of 6784 | . . . . . . . . . 10 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
20 | 18, 19 | ax-mp 5 | . . . . . . . . 9 ⊢ log:(ℂ ∖ {0})⟶ran log |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → log:(ℂ ∖ {0})⟶ran log) |
22 | 0nrp 12950 | . . . . . . . . . . . 12 ⊢ ¬ 0 ∈ ℝ+ | |
23 | disjsn 4672 | . . . . . . . . . . . 12 ⊢ ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+) | |
24 | 22, 23 | mpbir 230 | . . . . . . . . . . 11 ⊢ (ℝ+ ∩ {0}) = ∅ |
25 | disjdif2 4439 | . . . . . . . . . . 11 ⊢ ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) = ℝ+ |
27 | ssdif 4099 | . . . . . . . . . . 11 ⊢ (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})) | |
28 | 8, 27 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}) |
29 | 26, 28 | eqsstrri 3979 | . . . . . . . . 9 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
30 | 29 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ+ ⊆ (ℂ ∖ {0})) |
31 | 21, 30 | feqresmpt 6911 | . . . . . . 7 ⊢ (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
32 | 31 | eqcomd 2742 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+)) |
33 | 32 | oveq2d 7373 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+))) |
34 | dvrelog 25992 | . . . . . 6 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
36 | 33, 35 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
37 | dvrelog2.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
38 | dvrelog2.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
39 | elicc2 13329 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) | |
40 | 37, 38, 39 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
41 | 40 | biimpa 477 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
42 | 41 | simp1d 1142 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ) |
43 | 0red 11158 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ) | |
44 | 37 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
45 | dvrelog2.3 | . . . . . . . . . 10 ⊢ (𝜑 → 0 < 𝐴) | |
46 | 45 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝐴) |
47 | 41 | simp2d 1143 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑦) |
48 | 43, 44, 42, 46, 47 | ltletrd 11315 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝑦) |
49 | 42, 48 | jca 512 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦)) |
50 | elrp 12917 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) | |
51 | 49, 50 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ+) |
52 | 51 | ex 413 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ+)) |
53 | 52 | ssrdv 3950 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+) |
54 | eqid 2736 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
55 | 54 | tgioo2 24166 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
56 | iccntr 24184 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
57 | 37, 38, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
58 | 5, 13, 17, 36, 53, 55, 54, 57 | dvmptres2 25326 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
59 | 3, 58 | eqtrd 2776 | . 2 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
60 | dvrelog2.6 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) | |
61 | 60 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
62 | 61 | eqcomd 2742 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺) |
63 | 59, 62 | eqtrd 2776 | 1 ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3907 ∩ cin 3909 ⊆ wss 3910 ∅c0 4282 {csn 4586 {cpr 4588 class class class wbr 5105 ↦ cmpt 5188 ran crn 5634 ↾ cres 5635 ⟶wf 6492 –1-1-onto→wf1o 6495 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 < clt 11189 ≤ cle 11190 / cdiv 11812 ℝ+crp 12915 (,)cioo 13264 [,]cicc 13267 TopOpenctopn 17303 topGenctg 17319 ℂfldccnfld 20796 intcnt 22368 D cdv 25227 logclog 25910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |