Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrelog2 | Structured version Visualization version GIF version |
Description: The derivative of the logarithm, ftc2 25208 version. (Contributed by metakunt, 11-Aug-2024.) |
Ref | Expression |
---|---|
dvrelog2.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvrelog2.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvrelog2.3 | ⊢ (𝜑 → 0 < 𝐴) |
dvrelog2.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
dvrelog2.5 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) |
dvrelog2.6 | ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) |
Ref | Expression |
---|---|
dvrelog2 | ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrelog2.5 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) |
3 | 2 | oveq2d 7291 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)))) |
4 | reelprrecn 10963 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
6 | rpssre 12737 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
7 | ax-resscn 10928 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
8 | 6, 7 | sstri 3930 | . . . . . . 7 ⊢ ℝ+ ⊆ ℂ |
9 | 8 | sseli 3917 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
11 | rpne0 12746 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
12 | 11 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
13 | 10, 12 | logcld 25726 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
14 | 1red 10976 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 1 ∈ ℝ) | |
15 | 6 | sseli 3917 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) |
16 | 14, 15, 11 | redivcld 11803 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ) |
17 | 16 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ) |
18 | logf1o 25720 | . . . . . . . . . 10 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
19 | f1of 6716 | . . . . . . . . . 10 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
20 | 18, 19 | ax-mp 5 | . . . . . . . . 9 ⊢ log:(ℂ ∖ {0})⟶ran log |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → log:(ℂ ∖ {0})⟶ran log) |
22 | 0nrp 12765 | . . . . . . . . . . . 12 ⊢ ¬ 0 ∈ ℝ+ | |
23 | disjsn 4647 | . . . . . . . . . . . 12 ⊢ ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+) | |
24 | 22, 23 | mpbir 230 | . . . . . . . . . . 11 ⊢ (ℝ+ ∩ {0}) = ∅ |
25 | disjdif2 4413 | . . . . . . . . . . 11 ⊢ ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) = ℝ+ |
27 | ssdif 4074 | . . . . . . . . . . 11 ⊢ (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})) | |
28 | 8, 27 | ax-mp 5 | . . . . . . . . . 10 ⊢ (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}) |
29 | 26, 28 | eqsstrri 3956 | . . . . . . . . 9 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
30 | 29 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ+ ⊆ (ℂ ∖ {0})) |
31 | 21, 30 | feqresmpt 6838 | . . . . . . 7 ⊢ (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
32 | 31 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+)) |
33 | 32 | oveq2d 7291 | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+))) |
34 | dvrelog 25792 | . . . . . 6 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
36 | 33, 35 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
37 | dvrelog2.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
38 | dvrelog2.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
39 | elicc2 13144 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) | |
40 | 37, 38, 39 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
41 | 40 | biimpa 477 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
42 | 41 | simp1d 1141 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ) |
43 | 0red 10978 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ) | |
44 | 37 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
45 | dvrelog2.3 | . . . . . . . . . 10 ⊢ (𝜑 → 0 < 𝐴) | |
46 | 45 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝐴) |
47 | 41 | simp2d 1142 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑦) |
48 | 43, 44, 42, 46, 47 | ltletrd 11135 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝑦) |
49 | 42, 48 | jca 512 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦)) |
50 | elrp 12732 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) | |
51 | 49, 50 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ+) |
52 | 51 | ex 413 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ+)) |
53 | 52 | ssrdv 3927 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+) |
54 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
55 | 54 | tgioo2 23966 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
56 | iccntr 23984 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
57 | 37, 38, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
58 | 5, 13, 17, 36, 53, 55, 54, 57 | dvmptres2 25126 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
59 | 3, 58 | eqtrd 2778 | . 2 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
60 | dvrelog2.6 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) | |
61 | 60 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))) |
62 | 61 | eqcomd 2744 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺) |
63 | 59, 62 | eqtrd 2778 | 1 ⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 {cpr 4563 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ↾ cres 5591 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 < clt 11009 ≤ cle 11010 / cdiv 11632 ℝ+crp 12730 (,)cioo 13079 [,]cicc 13082 TopOpenctopn 17132 topGenctg 17148 ℂfldccnfld 20597 intcnt 22168 D cdv 25027 logclog 25710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |