Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelog2 Structured version   Visualization version   GIF version

Theorem dvrelog2 42230
Description: The derivative of the logarithm, ftc2 25998 version. (Contributed by metakunt, 11-Aug-2024.)
Hypotheses
Ref Expression
dvrelog2.1 (𝜑𝐴 ∈ ℝ)
dvrelog2.2 (𝜑𝐵 ∈ ℝ)
dvrelog2.3 (𝜑 → 0 < 𝐴)
dvrelog2.4 (𝜑𝐴𝐵)
dvrelog2.5 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))
dvrelog2.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
Assertion
Ref Expression
dvrelog2 (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelog2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelog2.5 . . . . 5 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))
21a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥)))
32oveq2d 7371 . . 3 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))))
4 reelprrecn 11109 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 rpssre 12904 . . . . . . . 8 + ⊆ ℝ
7 ax-resscn 11074 . . . . . . . 8 ℝ ⊆ ℂ
86, 7sstri 3940 . . . . . . 7 + ⊆ ℂ
98sseli 3926 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
109adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
11 rpne0 12913 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1211adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
1310, 12logcld 26526 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
14 1red 11124 . . . . . 6 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
156sseli 3926 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1614, 15, 11redivcld 11960 . . . . 5 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
1716adantl 481 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
18 logf1o 26520 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
19 f1of 6771 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
2018, 19ax-mp 5 . . . . . . . . 9 log:(ℂ ∖ {0})⟶ran log
2120a1i 11 . . . . . . . 8 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
22 0nrp 12933 . . . . . . . . . . . 12 ¬ 0 ∈ ℝ+
23 disjsn 4665 . . . . . . . . . . . 12 ((ℝ+ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℝ+)
2422, 23mpbir 231 . . . . . . . . . . 11 (ℝ+ ∩ {0}) = ∅
25 disjdif2 4429 . . . . . . . . . . 11 ((ℝ+ ∩ {0}) = ∅ → (ℝ+ ∖ {0}) = ℝ+)
2624, 25ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) = ℝ+
27 ssdif 4093 . . . . . . . . . . 11 (ℝ+ ⊆ ℂ → (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0}))
288, 27ax-mp 5 . . . . . . . . . 10 (ℝ+ ∖ {0}) ⊆ (ℂ ∖ {0})
2926, 28eqsstrri 3978 . . . . . . . . 9 + ⊆ (ℂ ∖ {0})
3029a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
3121, 30feqresmpt 6900 . . . . . . 7 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3231eqcomd 2739 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) = (log ↾ ℝ+))
3332oveq2d 7371 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (ℝ D (log ↾ ℝ+)))
34 dvrelog 26593 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
3534a1i 11 . . . . 5 (𝜑 → (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
3633, 35eqtrd 2768 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
37 dvrelog2.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
38 dvrelog2.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
39 elicc2 13318 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4037, 38, 39syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4140biimpa 476 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4241simp1d 1142 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
43 0red 11126 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ)
4437adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
45 dvrelog2.3 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
4645adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝐴)
4741simp2d 1143 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
4843, 44, 42, 46, 47ltletrd 11284 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 0 < 𝑦)
4942, 48jca 511 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
50 elrp 12898 . . . . . . 7 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
5149, 50sylibr 234 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ+)
5251ex 412 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ+))
5352ssrdv 3936 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+)
54 tgioo4 24740 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
55 eqid 2733 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
56 iccntr 24757 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5737, 38, 56syl2anc 584 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
585, 13, 17, 36, 53, 54, 55, 57dvmptres2 25913 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
593, 58eqtrd 2768 . 2 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
60 dvrelog2.6 . . . 4 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥))
6160a1i 11 . . 3 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)))
6261eqcomd 2739 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑥)) = 𝐺)
6359, 62eqtrd 2768 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cdif 3895  cin 3897  wss 3898  c0 4282  {csn 4577  {cpr 4579   class class class wbr 5095  cmpt 5176  ran crn 5622  cres 5623  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   < clt 11157  cle 11158   / cdiv 11785  +crp 12896  (,)cioo 13252  [,]cicc 13255  TopOpenctopn 17332  topGenctg 17348  fldccnfld 21300  intcnt 22952   D cdv 25811  logclog 26510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator