Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptfprodlem Structured version   Visualization version   GIF version

Theorem dvmptfprodlem 45865
Description: Induction step for dvmptfprod 45866. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptfprodlem.xph 𝑥𝜑
dvmptfprodlem.iph 𝑖𝜑
dvmptfprodlem.jph 𝑗𝜑
dvmptfprodlem.if 𝑖𝐹
dvmptfprodlem.jg 𝑗𝐺
dvmptfprodlem.a ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptfprodlem.d (𝜑𝐷 ∈ Fin)
dvmptfprodlem.e (𝜑𝐸 ∈ V)
dvmptfprodlem.db (𝜑 → ¬ 𝐸𝐷)
dvmptfprodlem.ss (𝜑 → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
dvmptfprodlem.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptfprodlem.c (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐶 ∈ ℂ)
dvmptfprodlem.dvp (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐷 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴)))
dvmptfprodlem.14 ((𝜑𝑥𝑋) → 𝐺 ∈ ℂ)
dvmptfprodlem.dvf (𝜑 → (𝑆 D (𝑥𝑋𝐹)) = (𝑥𝑋𝐺))
dvmptfprodlem.f (𝑖 = 𝐸𝐴 = 𝐹)
dvmptfprodlem.cg (𝑗 = 𝐸𝐶 = 𝐺)
Assertion
Ref Expression
dvmptfprodlem (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
Distinct variable groups:   𝐴,𝑗   𝐷,𝑖,𝑗,𝑥   𝑖,𝐸,𝑗,𝑥   𝑗,𝐹   𝑖,𝐼   𝑖,𝑋,𝑗,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑖,𝑗)   𝐴(𝑥,𝑖)   𝐶(𝑥,𝑖,𝑗)   𝑆(𝑥,𝑖,𝑗)   𝐹(𝑥,𝑖)   𝐺(𝑥,𝑖,𝑗)   𝐼(𝑥,𝑗)

Proof of Theorem dvmptfprodlem
StepHypRef Expression
1 dvmptfprodlem.xph . . . 4 𝑥𝜑
2 dvmptfprodlem.iph . . . . . . 7 𝑖𝜑
3 nfcv 2908 . . . . . . . 8 𝑖𝑥
4 nfcv 2908 . . . . . . . 8 𝑖𝑋
53, 4nfel 2923 . . . . . . 7 𝑖 𝑥𝑋
62, 5nfan 1898 . . . . . 6 𝑖(𝜑𝑥𝑋)
7 dvmptfprodlem.if . . . . . . 7 𝑖𝐹
87a1i 11 . . . . . 6 ((𝜑𝑥𝑋) → 𝑖𝐹)
9 dvmptfprodlem.d . . . . . . . 8 (𝜑𝐷 ∈ Fin)
10 snfi 9109 . . . . . . . . 9 {𝐸} ∈ Fin
1110a1i 11 . . . . . . . 8 (𝜑 → {𝐸} ∈ Fin)
12 unfi 9238 . . . . . . . 8 ((𝐷 ∈ Fin ∧ {𝐸} ∈ Fin) → (𝐷 ∪ {𝐸}) ∈ Fin)
139, 11, 12syl2anc 583 . . . . . . 7 (𝜑 → (𝐷 ∪ {𝐸}) ∈ Fin)
1413adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → (𝐷 ∪ {𝐸}) ∈ Fin)
15 simpll 766 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝜑)
16 dvmptfprodlem.ss . . . . . . . . 9 (𝜑 → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
1716sselda 4008 . . . . . . . 8 ((𝜑𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝑖𝐼)
1817adantlr 714 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝑖𝐼)
19 simplr 768 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝑥𝑋)
20 dvmptfprodlem.a . . . . . . 7 ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
2115, 18, 19, 20syl3anc 1371 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∪ {𝐸})) → 𝐴 ∈ ℂ)
22 dvmptfprodlem.e . . . . . . . . 9 (𝜑𝐸 ∈ V)
23 snidg 4682 . . . . . . . . 9 (𝐸 ∈ V → 𝐸 ∈ {𝐸})
2422, 23syl 17 . . . . . . . 8 (𝜑𝐸 ∈ {𝐸})
25 elun2 4206 . . . . . . . 8 (𝐸 ∈ {𝐸} → 𝐸 ∈ (𝐷 ∪ {𝐸}))
2624, 25syl 17 . . . . . . 7 (𝜑𝐸 ∈ (𝐷 ∪ {𝐸}))
2726adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐸 ∈ (𝐷 ∪ {𝐸}))
28 dvmptfprodlem.f . . . . . . 7 (𝑖 = 𝐸𝐴 = 𝐹)
2928adantl 481 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) → 𝐴 = 𝐹)
306, 8, 14, 21, 27, 29fprodsplit1f 16038 . . . . 5 ((𝜑𝑥𝑋) → ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴 = (𝐹 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴))
31 difundir 4310 . . . . . . . . . 10 ((𝐷 ∪ {𝐸}) ∖ {𝐸}) = ((𝐷 ∖ {𝐸}) ∪ ({𝐸} ∖ {𝐸}))
3231a1i 11 . . . . . . . . 9 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) = ((𝐷 ∖ {𝐸}) ∪ ({𝐸} ∖ {𝐸})))
33 dvmptfprodlem.db . . . . . . . . . . 11 (𝜑 → ¬ 𝐸𝐷)
34 difsn 4823 . . . . . . . . . . 11 𝐸𝐷 → (𝐷 ∖ {𝐸}) = 𝐷)
3533, 34syl 17 . . . . . . . . . 10 (𝜑 → (𝐷 ∖ {𝐸}) = 𝐷)
36 difid 4398 . . . . . . . . . . 11 ({𝐸} ∖ {𝐸}) = ∅
3736a1i 11 . . . . . . . . . 10 (𝜑 → ({𝐸} ∖ {𝐸}) = ∅)
3835, 37uneq12d 4192 . . . . . . . . 9 (𝜑 → ((𝐷 ∖ {𝐸}) ∪ ({𝐸} ∖ {𝐸})) = (𝐷 ∪ ∅))
39 un0 4417 . . . . . . . . . 10 (𝐷 ∪ ∅) = 𝐷
4039a1i 11 . . . . . . . . 9 (𝜑 → (𝐷 ∪ ∅) = 𝐷)
4132, 38, 403eqtrd 2784 . . . . . . . 8 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) = 𝐷)
4241prodeq1d 15968 . . . . . . 7 (𝜑 → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴 = ∏𝑖𝐷 𝐴)
4342oveq2d 7464 . . . . . 6 (𝜑 → (𝐹 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐹 · ∏𝑖𝐷 𝐴))
4443adantr 480 . . . . 5 ((𝜑𝑥𝑋) → (𝐹 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐹 · ∏𝑖𝐷 𝐴))
4530, 44eqtrd 2780 . . . 4 ((𝜑𝑥𝑋) → ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴 = (𝐹 · ∏𝑖𝐷 𝐴))
461, 45mpteq2da 5264 . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴) = (𝑥𝑋 ↦ (𝐹 · ∏𝑖𝐷 𝐴)))
4746oveq2d 7464 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑆 D (𝑥𝑋 ↦ (𝐹 · ∏𝑖𝐷 𝐴))))
48 dvmptfprodlem.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
4916, 26sseldd 4009 . . . . 5 (𝜑𝐸𝐼)
5049adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐸𝐼)
51 simpl 482 . . . . 5 ((𝜑𝑥𝑋) → 𝜑)
52 simpr 484 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
5351, 50, 523jca 1128 . . . 4 ((𝜑𝑥𝑋) → (𝜑𝐸𝐼𝑥𝑋))
54 nfcv 2908 . . . . 5 𝑖𝐸
55 nfv 1913 . . . . . . 7 𝑖 𝐸𝐼
562, 55, 5nf3an 1900 . . . . . 6 𝑖(𝜑𝐸𝐼𝑥𝑋)
57 nfcv 2908 . . . . . . 7 𝑖
587, 57nfel 2923 . . . . . 6 𝑖 𝐹 ∈ ℂ
5956, 58nfim 1895 . . . . 5 𝑖((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ)
60 ancom 460 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) ↔ (𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)))
6160imbi1i 349 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) → 𝐴 = 𝐹) ↔ ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐴 = 𝐹))
62 eqcom 2747 . . . . . . . . . . . . 13 (𝐴 = 𝐹𝐹 = 𝐴)
6362imbi2i 336 . . . . . . . . . . . 12 (((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐴 = 𝐹) ↔ ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐹 = 𝐴))
6461, 63bitri 275 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑖 = 𝐸) → 𝐴 = 𝐹) ↔ ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐹 = 𝐴))
6529, 64mpbi 230 . . . . . . . . . 10 ((𝑖 = 𝐸 ∧ (𝜑𝑥𝑋)) → 𝐹 = 𝐴)
66653adantr2 1170 . . . . . . . . 9 ((𝑖 = 𝐸 ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐹 = 𝐴)
67663adant2 1131 . . . . . . . 8 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐹 = 𝐴)
68 simp3 1138 . . . . . . . . 9 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → (𝜑𝐸𝐼𝑥𝑋))
69 eleq1 2832 . . . . . . . . . . . . 13 (𝑖 = 𝐸 → (𝑖𝐼𝐸𝐼))
70693anbi2d 1441 . . . . . . . . . . . 12 (𝑖 = 𝐸 → ((𝜑𝑖𝐼𝑥𝑋) ↔ (𝜑𝐸𝐼𝑥𝑋)))
7170imbi1d 341 . . . . . . . . . . 11 (𝑖 = 𝐸 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝐸𝐼𝑥𝑋) → 𝐴 ∈ ℂ)))
7271biimpa 476 . . . . . . . . . 10 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)) → ((𝜑𝐸𝐼𝑥𝑋) → 𝐴 ∈ ℂ))
73723adant3 1132 . . . . . . . . 9 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → ((𝜑𝐸𝐼𝑥𝑋) → 𝐴 ∈ ℂ))
7468, 73mpd 15 . . . . . . . 8 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐴 ∈ ℂ)
7567, 74eqeltrd 2844 . . . . . . 7 ((𝑖 = 𝐸 ∧ ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ∧ (𝜑𝐸𝐼𝑥𝑋)) → 𝐹 ∈ ℂ)
76753exp 1119 . . . . . 6 (𝑖 = 𝐸 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) → ((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ)))
77202a1i 12 . . . . . 6 (𝑖 = 𝐸 → (((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ) → ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)))
7876, 77impbid 212 . . . . 5 (𝑖 = 𝐸 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ)))
7954, 59, 78, 20vtoclgf 3581 . . . 4 (𝐸𝐼 → ((𝜑𝐸𝐼𝑥𝑋) → 𝐹 ∈ ℂ))
8050, 53, 79sylc 65 . . 3 ((𝜑𝑥𝑋) → 𝐹 ∈ ℂ)
81 dvmptfprodlem.14 . . 3 ((𝜑𝑥𝑋) → 𝐺 ∈ ℂ)
82 dvmptfprodlem.dvf . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐹)) = (𝑥𝑋𝐺))
8351, 9syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐷 ∈ Fin)
8451adantr 480 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝜑)
8516adantr 480 . . . . . . 7 ((𝜑𝑖𝐷) → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
86 elun1 4205 . . . . . . . 8 (𝑖𝐷𝑖 ∈ (𝐷 ∪ {𝐸}))
8786adantl 481 . . . . . . 7 ((𝜑𝑖𝐷) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
8885, 87sseldd 4009 . . . . . 6 ((𝜑𝑖𝐷) → 𝑖𝐼)
8988adantlr 714 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝑖𝐼)
9052adantr 480 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝑥𝑋)
9184, 89, 90, 20syl3anc 1371 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑖𝐷) → 𝐴 ∈ ℂ)
926, 83, 91fprodclf 16040 . . 3 ((𝜑𝑥𝑋) → ∏𝑖𝐷 𝐴 ∈ ℂ)
93 dvmptfprodlem.jph . . . . 5 𝑗𝜑
94 nfv 1913 . . . . 5 𝑗 𝑥𝑋
9593, 94nfan 1898 . . . 4 𝑗(𝜑𝑥𝑋)
96 dvmptfprodlem.c . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐶 ∈ ℂ)
97 diffi 9242 . . . . . . . . 9 (𝐷 ∈ Fin → (𝐷 ∖ {𝑗}) ∈ Fin)
989, 97syl 17 . . . . . . . 8 (𝜑 → (𝐷 ∖ {𝑗}) ∈ Fin)
9998adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐷 ∖ {𝑗}) ∈ Fin)
100 eldifi 4154 . . . . . . . . 9 (𝑖 ∈ (𝐷 ∖ {𝑗}) → 𝑖𝐷)
101100adantl 481 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∖ {𝑗})) → 𝑖𝐷)
102101, 91syldan 590 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ (𝐷 ∖ {𝑗})) → 𝐴 ∈ ℂ)
1036, 99, 102fprodclf 16040 . . . . . 6 ((𝜑𝑥𝑋) → ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 ∈ ℂ)
104103adantr 480 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 ∈ ℂ)
10596, 104mulcld 11310 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) ∈ ℂ)
10695, 83, 105fsumclf 15786 . . 3 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) ∈ ℂ)
107 dvmptfprodlem.dvp . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐷 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴)))
1081, 48, 80, 81, 82, 92, 106, 107dvmptmulf 45858 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐹 · ∏𝑖𝐷 𝐴))) = (𝑥𝑋 ↦ ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))))
109 dvmptfprodlem.jg . . . . . 6 𝑗𝐺
110 nfcv 2908 . . . . . 6 𝑗 ·
111 nfcv 2908 . . . . . 6 𝑗𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴
112109, 110, 111nfov 7478 . . . . 5 𝑗(𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)
11351, 22syl 17 . . . . 5 ((𝜑𝑥𝑋) → 𝐸 ∈ V)
11451, 33syl 17 . . . . 5 ((𝜑𝑥𝑋) → ¬ 𝐸𝐷)
115 diffi 9242 . . . . . . . . . 10 ((𝐷 ∪ {𝐸}) ∈ Fin → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) ∈ Fin)
11613, 115syl 17 . . . . . . . . 9 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) ∈ Fin)
117116adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) ∈ Fin)
118 eldifi 4154 . . . . . . . . . 10 (𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗}) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
119118adantl 481 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
120119, 21syldan 590 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})) → 𝐴 ∈ ℂ)
1216, 117, 120fprodclf 16040 . . . . . . 7 ((𝜑𝑥𝑋) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 ∈ ℂ)
122121adantr 480 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 ∈ ℂ)
12396, 122mulcld 11310 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) ∈ ℂ)
124 dvmptfprodlem.cg . . . . . 6 (𝑗 = 𝐸𝐶 = 𝐺)
125 sneq 4658 . . . . . . . 8 (𝑗 = 𝐸 → {𝑗} = {𝐸})
126125difeq2d 4149 . . . . . . 7 (𝑗 = 𝐸 → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∪ {𝐸}) ∖ {𝐸}))
127126prodeq1d 15968 . . . . . 6 (𝑗 = 𝐸 → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)
128124, 127oveq12d 7466 . . . . 5 (𝑗 = 𝐸 → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴))
12941, 9eqeltrd 2844 . . . . . . . 8 (𝜑 → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) ∈ Fin)
130129adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐷 ∪ {𝐸}) ∖ {𝐸}) ∈ Fin)
13151adantr 480 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝜑)
13216adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → (𝐷 ∪ {𝐸}) ⊆ 𝐼)
133 eldifi 4154 . . . . . . . . . . 11 (𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸}) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
134133adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑖 ∈ (𝐷 ∪ {𝐸}))
135132, 134sseldd 4009 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑖𝐼)
136135adantlr 714 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑖𝐼)
13752adantr 480 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝑥𝑋)
138131, 136, 137, 20syl3anc 1371 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})) → 𝐴 ∈ ℂ)
1396, 130, 138fprodclf 16040 . . . . . 6 ((𝜑𝑥𝑋) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴 ∈ ℂ)
14081, 139mulcld 11310 . . . . 5 ((𝜑𝑥𝑋) → (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) ∈ ℂ)
14195, 112, 83, 113, 114, 123, 128, 140fsumsplitsn 15792 . . . 4 ((𝜑𝑥𝑋) → Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) + (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)))
142 difundir 4310 . . . . . . . . . . . . . . . . 17 ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∖ {𝑗}) ∪ ({𝐸} ∖ {𝑗}))
143142a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐷) → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∖ {𝑗}) ∪ ({𝐸} ∖ {𝑗})))
144 nfv 1913 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑗𝐷
1451, 144nfan 1898 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝜑𝑗𝐷)
146 elsni 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ {𝐸} → 𝑥 = 𝐸)
147146eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {𝐸} → 𝐸 = 𝑥)
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝐸 = 𝑥)
149 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗)
150 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝑗 = 𝑗)
151148, 149, 1503eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ {𝐸} ∧ 𝑥 = 𝑗) → 𝐸 = 𝑗)
152151adantll 713 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → 𝐸 = 𝑗)
153 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → 𝑗𝐷)
154152, 153eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → 𝐸𝐷)
15533ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) ∧ 𝑥 = 𝑗) → ¬ 𝐸𝐷)
156154, 155pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) → ¬ 𝑥 = 𝑗)
157 velsn 4664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑗} ↔ 𝑥 = 𝑗)
158156, 157sylnibr 329 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝐷) ∧ 𝑥 ∈ {𝐸}) → ¬ 𝑥 ∈ {𝑗})
159158ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝐷) → (𝑥 ∈ {𝐸} → ¬ 𝑥 ∈ {𝑗}))
160145, 159ralrimi 3263 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝐷) → ∀𝑥 ∈ {𝐸} ¬ 𝑥 ∈ {𝑗})
161 disj 4473 . . . . . . . . . . . . . . . . . . 19 (({𝐸} ∩ {𝑗}) = ∅ ↔ ∀𝑥 ∈ {𝐸} ¬ 𝑥 ∈ {𝑗})
162160, 161sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝐷) → ({𝐸} ∩ {𝑗}) = ∅)
163 disjdif2 4503 . . . . . . . . . . . . . . . . . 18 (({𝐸} ∩ {𝑗}) = ∅ → ({𝐸} ∖ {𝑗}) = {𝐸})
164162, 163syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐷) → ({𝐸} ∖ {𝑗}) = {𝐸})
165164uneq2d 4191 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐷) → ((𝐷 ∖ {𝑗}) ∪ ({𝐸} ∖ {𝑗})) = ((𝐷 ∖ {𝑗}) ∪ {𝐸}))
166143, 165eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐷) → ((𝐷 ∪ {𝐸}) ∖ {𝑗}) = ((𝐷 ∖ {𝑗}) ∪ {𝐸}))
167166prodeq1d 15968 . . . . . . . . . . . . . 14 ((𝜑𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝐷 ∖ {𝑗}) ∪ {𝐸})𝐴)
168167adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝐷 ∖ {𝑗}) ∪ {𝐸})𝐴)
169 nfv 1913 . . . . . . . . . . . . . . 15 𝑖 𝑗𝐷
1706, 169nfan 1898 . . . . . . . . . . . . . 14 𝑖((𝜑𝑥𝑋) ∧ 𝑗𝐷)
17199adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐷 ∖ {𝑗}) ∈ Fin)
17251adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝜑)
173172, 22syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐸 ∈ V)
174 id 22 . . . . . . . . . . . . . . . . . 18 𝐸𝐷 → ¬ 𝐸𝐷)
175174intnanrd 489 . . . . . . . . . . . . . . . . . 18 𝐸𝐷 → ¬ (𝐸𝐷 ∧ ¬ 𝐸 ∈ {𝑗}))
176174, 175syl 17 . . . . . . . . . . . . . . . . 17 𝐸𝐷 → ¬ (𝐸𝐷 ∧ ¬ 𝐸 ∈ {𝑗}))
177 eldif 3986 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ (𝐷 ∖ {𝑗}) ↔ (𝐸𝐷 ∧ ¬ 𝐸 ∈ {𝑗}))
178176, 177sylnibr 329 . . . . . . . . . . . . . . . 16 𝐸𝐷 → ¬ 𝐸 ∈ (𝐷 ∖ {𝑗}))
17933, 178syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐸 ∈ (𝐷 ∖ {𝑗}))
180172, 179syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ¬ 𝐸 ∈ (𝐷 ∖ {𝑗}))
181102adantlr 714 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑗𝐷) ∧ 𝑖 ∈ (𝐷 ∖ {𝑗})) → 𝐴 ∈ ℂ)
18280adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → 𝐹 ∈ ℂ)
183170, 7, 171, 173, 180, 181, 28, 182fprodsplitsn 16037 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∖ {𝑗}) ∪ {𝐸})𝐴 = (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹))
184 eqidd 2741 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹) = (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹))
185168, 183, 1843eqtrd 2784 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴 = (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹))
186185oveq2d 7464 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (𝐶 · (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹)))
18796, 104, 182mulassd 11313 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = (𝐶 · (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹)))
188187eqcomd 2746 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · (∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴 · 𝐹)) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
189186, 188eqtrd 2780 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑗𝐷) → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
190189ex 412 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑗𝐷 → (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹)))
19195, 190ralrimi 3263 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
192191sumeq2d 15749 . . . . . . 7 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = Σ𝑗𝐷 ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
19395, 83, 80, 105fsummulc1f 45492 . . . . . . . 8 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = Σ𝑗𝐷 ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
194193eqcomd 2746 . . . . . . 7 ((𝜑𝑥𝑋) → Σ𝑗𝐷 ((𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
195 eqidd 2741 . . . . . . 7 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
196192, 194, 1953eqtrd 2784 . . . . . 6 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) = (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))
197106, 80mulcld 11310 . . . . . 6 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹) ∈ ℂ)
198196, 197eqeltrd 2844 . . . . 5 ((𝜑𝑥𝑋) → Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) ∈ ℂ)
199198, 140addcomd 11492 . . . 4 ((𝜑𝑥𝑋) → (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴) + (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴)) = ((𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) + Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
20042oveq2d 7464 . . . . . 6 (𝜑 → (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐺 · ∏𝑖𝐷 𝐴))
201200adantr 480 . . . . 5 ((𝜑𝑥𝑋) → (𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) = (𝐺 · ∏𝑖𝐷 𝐴))
202201, 196oveq12d 7466 . . . 4 ((𝜑𝑥𝑋) → ((𝐺 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝐸})𝐴) + Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)) = ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹)))
203141, 199, 2023eqtrrd 2785 . . 3 ((𝜑𝑥𝑋) → ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹)) = Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴))
2041, 203mpteq2da 5264 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐺 · ∏𝑖𝐷 𝐴) + (Σ𝑗𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴) · 𝐹))) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
20547, 108, 2043eqtrd 2784 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  {cpr 4650  cmpt 5249  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183   + caddc 11187   · cmul 11189  Σcsu 15734  cprod 15951   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-prod 15952  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvmptfprod  45866
  Copyright terms: Public domain W3C validator