![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjiunel | Structured version Visualization version GIF version |
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
Ref | Expression |
---|---|
disjiunel.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
disjiunel.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
disjiunel.3 | ⊢ (𝜑 → 𝐸 ⊆ 𝐴) |
disjiunel.4 | ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 𝐸)) |
Ref | Expression |
---|---|
disjiunel | ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjiunel.3 | . . . . 5 ⊢ (𝜑 → 𝐸 ⊆ 𝐴) | |
2 | disjiunel.4 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 𝐸)) | |
3 | 2 | eldifad 3961 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
4 | 3 | snssd 4813 | . . . . 5 ⊢ (𝜑 → {𝑌} ⊆ 𝐴) |
5 | 1, 4 | unssd 4187 | . . . 4 ⊢ (𝜑 → (𝐸 ∪ {𝑌}) ⊆ 𝐴) |
6 | disjiunel.1 | . . . 4 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
7 | disjss1 5120 | . . . 4 ⊢ ((𝐸 ∪ {𝑌}) ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵)) | |
8 | 5, 6, 7 | sylc 65 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵) |
9 | 2 | eldifbd 3962 | . . . 4 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐸) |
10 | disjiunel.2 | . . . . 5 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
11 | 10 | disjunsn 31825 | . . . 4 ⊢ ((𝑌 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐸) → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥 ∈ 𝐸 𝐵 ∧ (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅))) |
12 | 3, 9, 11 | syl2anc 585 | . . 3 ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥 ∈ 𝐸 𝐵 ∧ (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅))) |
13 | 8, 12 | mpbid 231 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐸 𝐵 ∧ (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅)) |
14 | 13 | simprd 497 | 1 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∖ cdif 3946 ∪ cun 3947 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 {csn 4629 ∪ ciun 4998 Disj wdisj 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-iun 5000 df-disj 5115 |
This theorem is referenced by: disjuniel 31828 |
Copyright terms: Public domain | W3C validator |