Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjiunel Structured version   Visualization version   GIF version

Theorem disjiunel 30359
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
disjiunel.1 (𝜑Disj 𝑥𝐴 𝐵)
disjiunel.2 (𝑥 = 𝑌𝐵 = 𝐷)
disjiunel.3 (𝜑𝐸𝐴)
disjiunel.4 (𝜑𝑌 ∈ (𝐴𝐸))
Assertion
Ref Expression
disjiunel (𝜑 → ( 𝑥𝐸 𝐵𝐷) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐸   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem disjiunel
StepHypRef Expression
1 disjiunel.3 . . . . 5 (𝜑𝐸𝐴)
2 disjiunel.4 . . . . . . 7 (𝜑𝑌 ∈ (𝐴𝐸))
32eldifad 3893 . . . . . 6 (𝜑𝑌𝐴)
43snssd 4702 . . . . 5 (𝜑 → {𝑌} ⊆ 𝐴)
51, 4unssd 4113 . . . 4 (𝜑 → (𝐸 ∪ {𝑌}) ⊆ 𝐴)
6 disjiunel.1 . . . 4 (𝜑Disj 𝑥𝐴 𝐵)
7 disjss1 5001 . . . 4 ((𝐸 ∪ {𝑌}) ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵))
85, 6, 7sylc 65 . . 3 (𝜑Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵)
92eldifbd 3894 . . . 4 (𝜑 → ¬ 𝑌𝐸)
10 disjiunel.2 . . . . 5 (𝑥 = 𝑌𝐵 = 𝐷)
1110disjunsn 30357 . . . 4 ((𝑌𝐴 ∧ ¬ 𝑌𝐸) → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥𝐸 𝐵 ∧ ( 𝑥𝐸 𝐵𝐷) = ∅)))
123, 9, 11syl2anc 587 . . 3 (𝜑 → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥𝐸 𝐵 ∧ ( 𝑥𝐸 𝐵𝐷) = ∅)))
138, 12mpbid 235 . 2 (𝜑 → (Disj 𝑥𝐸 𝐵 ∧ ( 𝑥𝐸 𝐵𝐷) = ∅))
1413simprd 499 1 (𝜑 → ( 𝑥𝐸 𝐵𝐷) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   ciun 4881  Disj wdisj 4995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-iun 4883  df-disj 4996
This theorem is referenced by:  disjuniel  30360
  Copyright terms: Public domain W3C validator