MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djussxp Structured version   Visualization version   GIF version

Theorem djussxp 5830
Description: Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 5026 . 2 ( 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V))
2 snssi 4789 . . 3 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
3 ssv 3988 . . 3 𝐵 ⊆ V
4 xpss12 5674 . . 3 (({𝑥} ⊆ 𝐴𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
52, 3, 4sylancl 586 . 2 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
61, 5mprgbir 3059 1 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3464  wss 3931  {csn 4606   ciun 4972   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-v 3466  df-ss 3948  df-sn 4607  df-iun 4974  df-opab 5187  df-xp 5665
This theorem is referenced by:  djudisj  6161  iundom2g  10559
  Copyright terms: Public domain W3C validator