| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djussxp | Structured version Visualization version GIF version | ||
| Description: Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| djussxp | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss 5009 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
| 2 | snssi 4772 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
| 3 | ssv 3971 | . . 3 ⊢ 𝐵 ⊆ V | |
| 4 | xpss12 5653 | . . 3 ⊢ (({𝑥} ⊆ 𝐴 ∧ 𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
| 5 | 2, 3, 4 | sylancl 586 | . 2 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) |
| 6 | 1, 5 | mprgbir 3051 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 ∪ ciun 4955 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-sn 4590 df-iun 4957 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: djudisj 6140 iundom2g 10493 |
| Copyright terms: Public domain | W3C validator |