MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djussxp Structured version   Visualization version   GIF version

Theorem djussxp 5859
Description: Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 5050 . 2 ( 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V))
2 snssi 4813 . . 3 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
3 ssv 4020 . . 3 𝐵 ⊆ V
4 xpss12 5704 . . 3 (({𝑥} ⊆ 𝐴𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
52, 3, 4sylancl 586 . 2 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
61, 5mprgbir 3066 1 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  wss 3963  {csn 4631   ciun 4996   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-ss 3980  df-sn 4632  df-iun 4998  df-opab 5211  df-xp 5695
This theorem is referenced by:  djudisj  6189  iundom2g  10578
  Copyright terms: Public domain W3C validator