| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djudisj | Structured version Visualization version GIF version | ||
| Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| djudisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djussxp 5809 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) | |
| 2 | incom 4172 | . . 3 ⊢ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) | |
| 3 | djussxp 5809 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) | |
| 4 | incom 4172 | . . . . 5 ⊢ ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V)) | |
| 5 | xpdisj1 6134 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅) | |
| 6 | 4, 5 | eqtrid 2776 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅) |
| 7 | ssdisj 4423 | . . . 4 ⊢ ((∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) | |
| 8 | 3, 6, 7 | sylancr 587 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) |
| 9 | 2, 8 | eqtrid 2776 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
| 10 | ssdisj 4423 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | |
| 11 | 1, 9, 10 | sylancr 587 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 ∪ ciun 4955 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-iun 4957 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: ackbij1lem9 10180 |
| Copyright terms: Public domain | W3C validator |