MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudisj Structured version   Visualization version   GIF version

Theorem djudisj 6070
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djudisj ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem djudisj
StepHypRef Expression
1 djussxp 5754 . 2 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V)
2 incom 4135 . . 3 ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V))
3 djussxp 5754 . . . 4 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V)
4 incom 4135 . . . . 5 ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V))
5 xpdisj1 6064 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅)
64, 5eqtrid 2790 . . . 4 ((𝐴𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅)
7 ssdisj 4393 . . . 4 (( 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
83, 6, 7sylancr 587 . . 3 ((𝐴𝐵) = ∅ → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
92, 8eqtrid 2790 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
10 ssdisj 4393 . 2 (( 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅) → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
111, 9, 10sylancr 587 1 ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3432  cin 3886  wss 3887  c0 4256  {csn 4561   ciun 4924   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  ackbij1lem9  9984
  Copyright terms: Public domain W3C validator