MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudisj Structured version   Visualization version   GIF version

Theorem djudisj 6187
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djudisj ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem djudisj
StepHypRef Expression
1 djussxp 5856 . 2 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V)
2 incom 4209 . . 3 ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V))
3 djussxp 5856 . . . 4 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V)
4 incom 4209 . . . . 5 ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V))
5 xpdisj1 6181 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅)
64, 5eqtrid 2789 . . . 4 ((𝐴𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅)
7 ssdisj 4460 . . . 4 (( 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
83, 6, 7sylancr 587 . . 3 ((𝐴𝐵) = ∅ → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
92, 8eqtrid 2789 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
10 ssdisj 4460 . 2 (( 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅) → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
111, 9, 10sylancr 587 1 ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3480  cin 3950  wss 3951  c0 4333  {csn 4626   ciun 4991   × cxp 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-iun 4993  df-opab 5206  df-xp 5691  df-rel 5692
This theorem is referenced by:  ackbij1lem9  10267
  Copyright terms: Public domain W3C validator