MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudisj Structured version   Visualization version   GIF version

Theorem djudisj 6166
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djudisj ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem djudisj
StepHypRef Expression
1 djussxp 5843 . 2 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V)
2 incom 4198 . . 3 ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V))
3 djussxp 5843 . . . 4 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V)
4 incom 4198 . . . . 5 ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V))
5 xpdisj1 6160 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅)
64, 5eqtrid 2780 . . . 4 ((𝐴𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅)
7 ssdisj 4456 . . . 4 (( 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
83, 6, 7sylancr 586 . . 3 ((𝐴𝐵) = ∅ → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
92, 8eqtrid 2780 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
10 ssdisj 4456 . 2 (( 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅) → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
111, 9, 10sylancr 586 1 ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  Vcvv 3470  cin 3944  wss 3945  c0 4319  {csn 4625   ciun 4992   × cxp 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-iun 4994  df-opab 5206  df-xp 5679  df-rel 5680
This theorem is referenced by:  ackbij1lem9  10246
  Copyright terms: Public domain W3C validator