Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djudisj | Structured version Visualization version GIF version |
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
djudisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djussxp 5754 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) | |
2 | incom 4135 | . . 3 ⊢ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) | |
3 | djussxp 5754 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) | |
4 | incom 4135 | . . . . 5 ⊢ ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V)) | |
5 | xpdisj1 6064 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅) | |
6 | 4, 5 | eqtrid 2790 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅) |
7 | ssdisj 4393 | . . . 4 ⊢ ((∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) | |
8 | 3, 6, 7 | sylancr 587 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅) |
9 | 2, 8 | eqtrid 2790 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
10 | ssdisj 4393 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | |
11 | 1, 9, 10 | sylancr 587 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ ciun 4924 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-iun 4926 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: ackbij1lem9 9984 |
Copyright terms: Public domain | W3C validator |