MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudisj Structured version   Visualization version   GIF version

Theorem djudisj 6045
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djudisj ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem djudisj
StepHypRef Expression
1 djussxp 5729 . 2 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V)
2 incom 4130 . . 3 ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V))
3 djussxp 5729 . . . 4 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V)
4 incom 4130 . . . . 5 ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V))
5 xpdisj1 6039 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅)
64, 5eqtrid 2790 . . . 4 ((𝐴𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅)
7 ssdisj 4389 . . . 4 (( 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
83, 6, 7sylancr 590 . . 3 ((𝐴𝐵) = ∅ → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
92, 8eqtrid 2790 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
10 ssdisj 4389 . 2 (( 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅) → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
111, 9, 10sylancr 590 1 ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  Vcvv 3421  cin 3880  wss 3881  c0 4252  {csn 4556   ciun 4919   × cxp 5564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pr 5337
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-iun 4921  df-opab 5131  df-xp 5572  df-rel 5573
This theorem is referenced by:  ackbij1lem9  9867
  Copyright terms: Public domain W3C validator