MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5867
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5862 . 2 dom ∅ = ∅
2 dm0rn0 5866 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 229 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4269  dom cdm 5620  ran crn 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-cnv 5628  df-dm 5630  df-rn 5631
This theorem is referenced by:  ima0  6015  0ima  6016  rnxpid  6111  xpima  6120  f0  6706  rnfvprc  6819  2ndval  7902  frxp  8034  oarec  8464  fodomr  8993  dfac5lem3  9982  itunitc  10278  relexprnd  14858  0rest  17237  arwval  17855  psgnsn  19224  oppglsm  19343  mpfrcl  21401  ply1frcl  21590  edgval  27708  0grsubgr  27934  0uhgrsubgr  27935  0ngrp  29161  bafval  29254  tocycf  31671  tocyc01  31672  locfinref  32089  esumrnmpt2  32334  sibf0  32601  mvtval  33761  mrsubvrs  33783  mstaval  33805  mzpmfp  40831  dmnonrel  41519  imanonrel  41522  conrel1d  41592  clsneibex  42033  neicvgbex  42043  sge00  44251
  Copyright terms: Public domain W3C validator