MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5892
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5887 . 2 dom ∅ = ∅
2 dm0rn0 5891 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 230 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4299  dom cdm 5641  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  ima0  6051  0ima  6052  rnxpid  6149  xpima  6158  f0  6744  rnfvprc  6855  2ndval  7974  frxp  8108  oarec  8529  fodomr  9098  fodomfir  9286  dfac5lem3  10085  itunitc  10381  relexprnd  15021  0rest  17399  arwval  18012  psgnsn  19457  oppglsm  19579  mpfrcl  21999  ply1frcl  22212  edgval  28983  0grsubgr  29212  0uhgrsubgr  29213  0ngrp  30447  bafval  30540  tocycf  33081  tocyc01  33082  unitprodclb  33367  locfinref  33838  esumrnmpt2  34065  sibf0  34332  mvtval  35494  mrsubvrs  35516  mstaval  35538  mzpmfp  42742  dmnonrel  43586  imanonrel  43589  conrel1d  43659  clsneibex  44098  neicvgbex  44108  sge00  46381  dmrnxp  48829
  Copyright terms: Public domain W3C validator