MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5910
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5905 . 2 dom ∅ = ∅
2 dm0rn0 5909 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 230 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4313  dom cdm 5659  ran crn 5660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-cnv 5667  df-dm 5669  df-rn 5670
This theorem is referenced by:  ima0  6069  0ima  6070  rnxpid  6167  xpima  6176  f0  6764  rnfvprc  6875  2ndval  7996  frxp  8130  oarec  8579  fodomr  9147  fodomfir  9345  dfac5lem3  10144  itunitc  10440  relexprnd  15072  0rest  17448  arwval  18061  psgnsn  19506  oppglsm  19628  mpfrcl  22048  ply1frcl  22261  edgval  29033  0grsubgr  29262  0uhgrsubgr  29263  0ngrp  30497  bafval  30590  tocycf  33133  tocyc01  33134  unitprodclb  33409  locfinref  33877  esumrnmpt2  34104  sibf0  34371  mvtval  35527  mrsubvrs  35549  mstaval  35571  mzpmfp  42737  dmnonrel  43581  imanonrel  43584  conrel1d  43654  clsneibex  44093  neicvgbex  44103  sge00  46372  dmrnxp  48782
  Copyright terms: Public domain W3C validator