MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5835
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5829 . 2 dom ∅ = ∅
2 dm0rn0 5834 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 229 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4256  dom cdm 5589  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  ima0  5985  0ima  5986  rnxpid  6076  xpima  6085  f0  6655  rnfvprc  6768  2ndval  7834  frxp  7967  oarec  8393  fodomr  8915  dfac5lem3  9881  itunitc  10177  relexprnd  14759  0rest  17140  arwval  17758  psgnsn  19128  oppglsm  19247  mpfrcl  21295  ply1frcl  21484  edgval  27419  0grsubgr  27645  0uhgrsubgr  27646  0ngrp  28873  bafval  28966  tocycf  31384  tocyc01  31385  locfinref  31791  esumrnmpt2  32036  sibf0  32301  mvtval  33462  mrsubvrs  33484  mstaval  33506  mzpmfp  40569  dmnonrel  41198  imanonrel  41201  conrel1d  41271  clsneibex  41712  neicvgbex  41722  sge00  43914
  Copyright terms: Public domain W3C validator