Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version |
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
rn0 | ⊢ ran ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5862 | . 2 ⊢ dom ∅ = ∅ | |
2 | dm0rn0 5866 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ran ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∅c0 4269 dom cdm 5620 ran crn 5621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-cnv 5628 df-dm 5630 df-rn 5631 |
This theorem is referenced by: ima0 6015 0ima 6016 rnxpid 6111 xpima 6120 f0 6706 rnfvprc 6819 2ndval 7902 frxp 8034 oarec 8464 fodomr 8993 dfac5lem3 9982 itunitc 10278 relexprnd 14858 0rest 17237 arwval 17855 psgnsn 19224 oppglsm 19343 mpfrcl 21401 ply1frcl 21590 edgval 27708 0grsubgr 27934 0uhgrsubgr 27935 0ngrp 29161 bafval 29254 tocycf 31671 tocyc01 31672 locfinref 32089 esumrnmpt2 32334 sibf0 32601 mvtval 33761 mrsubvrs 33783 mstaval 33805 mzpmfp 40831 dmnonrel 41519 imanonrel 41522 conrel1d 41592 clsneibex 42033 neicvgbex 42043 sge00 44251 |
Copyright terms: Public domain | W3C validator |