| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version | ||
| Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| rn0 | ⊢ ran ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5860 | . 2 ⊢ dom ∅ = ∅ | |
| 2 | dm0rn0 5864 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ran ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 dom cdm 5616 ran crn 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: ima0 6026 0ima 6027 rnxpid 6120 xpima 6129 f0 6704 rnfvprc 6816 2ndval 7924 frxp 8056 oarec 8477 fodomr 9041 fodomfir 9212 dfac5lem3 10013 itunitc 10309 relexprnd 14952 0rest 17330 arwval 17947 psgnsn 19430 oppglsm 19552 mpfrcl 22018 ply1frcl 22231 edgval 29025 0grsubgr 29254 0uhgrsubgr 29255 0ngrp 30486 bafval 30579 tocycf 33081 tocyc01 33082 unitprodclb 33349 locfinref 33849 esumrnmpt2 34076 sibf0 34342 mvtval 35532 mrsubvrs 35554 mstaval 35576 mzpmfp 42779 dmnonrel 43622 imanonrel 43625 conrel1d 43695 clsneibex 44134 neicvgbex 44144 sge00 46413 dmrnxp 48867 |
| Copyright terms: Public domain | W3C validator |