![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version |
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
rn0 | ⊢ ran ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5945 | . 2 ⊢ dom ∅ = ∅ | |
2 | dm0rn0 5949 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ran ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4352 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: ima0 6106 0ima 6107 rnxpid 6204 xpima 6213 f0 6802 rnfvprc 6914 2ndval 8033 frxp 8167 oarec 8618 fodomr 9194 fodomfir 9396 dfac5lem3 10194 itunitc 10490 relexprnd 15097 0rest 17489 arwval 18110 psgnsn 19562 oppglsm 19684 mpfrcl 22132 ply1frcl 22343 edgval 29084 0grsubgr 29313 0uhgrsubgr 29314 0ngrp 30543 bafval 30636 tocycf 33110 tocyc01 33111 unitprodclb 33382 locfinref 33787 esumrnmpt2 34032 sibf0 34299 mvtval 35468 mrsubvrs 35490 mstaval 35512 mzpmfp 42703 dmnonrel 43552 imanonrel 43555 conrel1d 43625 clsneibex 44064 neicvgbex 44074 sge00 46297 |
Copyright terms: Public domain | W3C validator |