| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version | ||
| Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| rn0 | ⊢ ran ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5905 | . 2 ⊢ dom ∅ = ∅ | |
| 2 | dm0rn0 5909 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ran ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4313 dom cdm 5659 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: ima0 6069 0ima 6070 rnxpid 6167 xpima 6176 f0 6764 rnfvprc 6875 2ndval 7996 frxp 8130 oarec 8579 fodomr 9147 fodomfir 9345 dfac5lem3 10144 itunitc 10440 relexprnd 15072 0rest 17448 arwval 18061 psgnsn 19506 oppglsm 19628 mpfrcl 22048 ply1frcl 22261 edgval 29033 0grsubgr 29262 0uhgrsubgr 29263 0ngrp 30497 bafval 30590 tocycf 33133 tocyc01 33134 unitprodclb 33409 locfinref 33877 esumrnmpt2 34104 sibf0 34371 mvtval 35527 mrsubvrs 35549 mstaval 35571 mzpmfp 42737 dmnonrel 43581 imanonrel 43584 conrel1d 43654 clsneibex 44093 neicvgbex 44103 sge00 46372 dmrnxp 48782 |
| Copyright terms: Public domain | W3C validator |