MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5889
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5884 . 2 dom ∅ = ∅
2 dm0rn0 5888 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 230 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4296  dom cdm 5638  ran crn 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649
This theorem is referenced by:  ima0  6048  0ima  6049  rnxpid  6146  xpima  6155  f0  6741  rnfvprc  6852  2ndval  7971  frxp  8105  oarec  8526  fodomr  9092  fodomfir  9279  dfac5lem3  10078  itunitc  10374  relexprnd  15014  0rest  17392  arwval  18005  psgnsn  19450  oppglsm  19572  mpfrcl  21992  ply1frcl  22205  edgval  28976  0grsubgr  29205  0uhgrsubgr  29206  0ngrp  30440  bafval  30533  tocycf  33074  tocyc01  33075  unitprodclb  33360  locfinref  33831  esumrnmpt2  34058  sibf0  34325  mvtval  35487  mrsubvrs  35509  mstaval  35531  mzpmfp  42735  dmnonrel  43579  imanonrel  43582  conrel1d  43652  clsneibex  44091  neicvgbex  44101  sge00  46374  dmrnxp  48825
  Copyright terms: Public domain W3C validator