Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version |
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
rn0 | ⊢ ran ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5829 | . 2 ⊢ dom ∅ = ∅ | |
2 | dm0rn0 5834 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ran ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: ima0 5985 0ima 5986 rnxpid 6076 xpima 6085 f0 6655 rnfvprc 6768 2ndval 7834 frxp 7967 oarec 8393 fodomr 8915 dfac5lem3 9881 itunitc 10177 relexprnd 14759 0rest 17140 arwval 17758 psgnsn 19128 oppglsm 19247 mpfrcl 21295 ply1frcl 21484 edgval 27419 0grsubgr 27645 0uhgrsubgr 27646 0ngrp 28873 bafval 28966 tocycf 31384 tocyc01 31385 locfinref 31791 esumrnmpt2 32036 sibf0 32301 mvtval 33462 mrsubvrs 33484 mstaval 33506 mzpmfp 40569 dmnonrel 41198 imanonrel 41201 conrel1d 41271 clsneibex 41712 neicvgbex 41722 sge00 43914 |
Copyright terms: Public domain | W3C validator |