| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version | ||
| Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| rn0 | ⊢ ran ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5884 | . 2 ⊢ dom ∅ = ∅ | |
| 2 | dm0rn0 5888 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ran ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: ima0 6048 0ima 6049 rnxpid 6146 xpima 6155 f0 6741 rnfvprc 6852 2ndval 7971 frxp 8105 oarec 8526 fodomr 9092 fodomfir 9279 dfac5lem3 10078 itunitc 10374 relexprnd 15014 0rest 17392 arwval 18005 psgnsn 19450 oppglsm 19572 mpfrcl 21992 ply1frcl 22205 edgval 28976 0grsubgr 29205 0uhgrsubgr 29206 0ngrp 30440 bafval 30533 tocycf 33074 tocyc01 33075 unitprodclb 33360 locfinref 33831 esumrnmpt2 34058 sibf0 34325 mvtval 35487 mrsubvrs 35509 mstaval 35531 mzpmfp 42735 dmnonrel 43579 imanonrel 43582 conrel1d 43652 clsneibex 44091 neicvgbex 44101 sge00 46374 dmrnxp 48825 |
| Copyright terms: Public domain | W3C validator |