Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version |
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
rn0 | ⊢ ran ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5818 | . 2 ⊢ dom ∅ = ∅ | |
2 | dm0rn0 5823 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ran ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: ima0 5974 0ima 5975 rnxpid 6065 xpima 6074 f0 6639 rnfvprc 6750 2ndval 7807 frxp 7938 oarec 8355 fodomr 8864 dfac5lem3 9812 itunitc 10108 relexprnd 14687 0rest 17057 arwval 17674 psgnsn 19043 oppglsm 19162 mpfrcl 21205 ply1frcl 21394 edgval 27322 0grsubgr 27548 0uhgrsubgr 27549 0ngrp 28774 bafval 28867 tocycf 31286 tocyc01 31287 locfinref 31693 esumrnmpt2 31936 sibf0 32201 mvtval 33362 mrsubvrs 33384 mstaval 33406 mzpmfp 40485 dmnonrel 41087 imanonrel 41090 conrel1d 41160 clsneibex 41601 neicvgbex 41611 sge00 43804 |
Copyright terms: Public domain | W3C validator |