| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version | ||
| Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| rn0 | ⊢ ran ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5864 | . 2 ⊢ dom ∅ = ∅ | |
| 2 | dm0rn0 5868 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ran ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 dom cdm 5619 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: ima0 6030 0ima 6031 rnxpid 6125 xpima 6134 f0 6709 rnfvprc 6822 2ndval 7930 frxp 8062 oarec 8483 fodomr 9048 fodomfir 9219 dfac5lem3 10023 itunitc 10319 relexprnd 14957 0rest 17335 arwval 17952 psgnsn 19434 oppglsm 19556 mpfrcl 22021 ply1frcl 22234 edgval 29029 0grsubgr 29258 0uhgrsubgr 29259 0ngrp 30493 bafval 30586 tocycf 33093 tocyc01 33094 unitprodclb 33361 locfinref 33875 esumrnmpt2 34102 sibf0 34368 mvtval 35565 mrsubvrs 35587 mstaval 35609 mzpmfp 42864 dmnonrel 43707 imanonrel 43710 conrel1d 43780 clsneibex 44219 neicvgbex 44229 sge00 46498 dmrnxp 48961 |
| Copyright terms: Public domain | W3C validator |