| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version | ||
| Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| rn0 | ⊢ ran ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5887 | . 2 ⊢ dom ∅ = ∅ | |
| 2 | dm0rn0 5891 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ran ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4299 dom cdm 5641 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: ima0 6051 0ima 6052 rnxpid 6149 xpima 6158 f0 6744 rnfvprc 6855 2ndval 7974 frxp 8108 oarec 8529 fodomr 9098 fodomfir 9286 dfac5lem3 10085 itunitc 10381 relexprnd 15021 0rest 17399 arwval 18012 psgnsn 19457 oppglsm 19579 mpfrcl 21999 ply1frcl 22212 edgval 28983 0grsubgr 29212 0uhgrsubgr 29213 0ngrp 30447 bafval 30540 tocycf 33081 tocyc01 33082 unitprodclb 33367 locfinref 33838 esumrnmpt2 34065 sibf0 34332 mvtval 35494 mrsubvrs 35516 mstaval 35538 mzpmfp 42742 dmnonrel 43586 imanonrel 43589 conrel1d 43659 clsneibex 44098 neicvgbex 44108 sge00 46381 dmrnxp 48829 |
| Copyright terms: Public domain | W3C validator |