| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rn0 | Structured version Visualization version GIF version | ||
| Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| rn0 | ⊢ ran ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5867 | . 2 ⊢ dom ∅ = ∅ | |
| 2 | dm0rn0 5871 | . 2 ⊢ (dom ∅ = ∅ ↔ ran ∅ = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ran ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 dom cdm 5623 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: ima0 6032 0ima 6033 rnxpid 6126 xpima 6135 f0 6709 rnfvprc 6820 2ndval 7934 frxp 8066 oarec 8487 fodomr 9052 fodomfir 9237 dfac5lem3 10038 itunitc 10334 relexprnd 14973 0rest 17351 arwval 17968 psgnsn 19417 oppglsm 19539 mpfrcl 22008 ply1frcl 22221 edgval 29012 0grsubgr 29241 0uhgrsubgr 29242 0ngrp 30473 bafval 30566 tocycf 33072 tocyc01 33073 unitprodclb 33336 locfinref 33807 esumrnmpt2 34034 sibf0 34301 mvtval 35472 mrsubvrs 35494 mstaval 35516 mzpmfp 42720 dmnonrel 43563 imanonrel 43566 conrel1d 43636 clsneibex 44075 neicvgbex 44085 sge00 46358 dmrnxp 48822 |
| Copyright terms: Public domain | W3C validator |