MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5872
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5867 . 2 dom ∅ = ∅
2 dm0rn0 5871 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 230 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4286  dom cdm 5623  ran crn 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-cnv 5631  df-dm 5633  df-rn 5634
This theorem is referenced by:  ima0  6032  0ima  6033  rnxpid  6126  xpima  6135  f0  6709  rnfvprc  6820  2ndval  7934  frxp  8066  oarec  8487  fodomr  9052  fodomfir  9237  dfac5lem3  10038  itunitc  10334  relexprnd  14973  0rest  17351  arwval  17968  psgnsn  19417  oppglsm  19539  mpfrcl  22008  ply1frcl  22221  edgval  29012  0grsubgr  29241  0uhgrsubgr  29242  0ngrp  30473  bafval  30566  tocycf  33072  tocyc01  33073  unitprodclb  33336  locfinref  33807  esumrnmpt2  34034  sibf0  34301  mvtval  35472  mrsubvrs  35494  mstaval  35516  mzpmfp  42720  dmnonrel  43563  imanonrel  43566  conrel1d  43636  clsneibex  44075  neicvgbex  44085  sge00  46358  dmrnxp  48822
  Copyright terms: Public domain W3C validator