MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5866
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5860 . 2 dom ∅ = ∅
2 dm0rn0 5864 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 230 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4283  dom cdm 5616  ran crn 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627
This theorem is referenced by:  ima0  6026  0ima  6027  rnxpid  6120  xpima  6129  f0  6704  rnfvprc  6816  2ndval  7924  frxp  8056  oarec  8477  fodomr  9041  fodomfir  9212  dfac5lem3  10013  itunitc  10309  relexprnd  14952  0rest  17330  arwval  17947  psgnsn  19430  oppglsm  19552  mpfrcl  22018  ply1frcl  22231  edgval  29025  0grsubgr  29254  0uhgrsubgr  29255  0ngrp  30486  bafval  30579  tocycf  33081  tocyc01  33082  unitprodclb  33349  locfinref  33849  esumrnmpt2  34076  sibf0  34342  mvtval  35532  mrsubvrs  35554  mstaval  35576  mzpmfp  42779  dmnonrel  43622  imanonrel  43625  conrel1d  43695  clsneibex  44134  neicvgbex  44144  sge00  46413  dmrnxp  48867
  Copyright terms: Public domain W3C validator