MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rn0 Structured version   Visualization version   GIF version

Theorem rn0 5950
Description: The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
rn0 ran ∅ = ∅

Proof of Theorem rn0
StepHypRef Expression
1 dm0 5945 . 2 dom ∅ = ∅
2 dm0rn0 5949 . 2 (dom ∅ = ∅ ↔ ran ∅ = ∅)
31, 2mpbi 230 1 ran ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  c0 4352  dom cdm 5700  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  ima0  6106  0ima  6107  rnxpid  6204  xpima  6213  f0  6802  rnfvprc  6914  2ndval  8033  frxp  8167  oarec  8618  fodomr  9194  fodomfir  9396  dfac5lem3  10194  itunitc  10490  relexprnd  15097  0rest  17489  arwval  18110  psgnsn  19562  oppglsm  19684  mpfrcl  22132  ply1frcl  22343  edgval  29084  0grsubgr  29313  0uhgrsubgr  29314  0ngrp  30543  bafval  30636  tocycf  33110  tocyc01  33111  unitprodclb  33382  locfinref  33787  esumrnmpt2  34032  sibf0  34299  mvtval  35468  mrsubvrs  35490  mstaval  35512  mzpmfp  42703  dmnonrel  43552  imanonrel  43555  conrel1d  43625  clsneibex  44064  neicvgbex  44074  sge00  46297
  Copyright terms: Public domain W3C validator