| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssres | Structured version Visualization version GIF version | ||
| Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| relssres | ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → Rel 𝐴) | |
| 2 | vex 3451 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 3 | vex 3451 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opeldm 5871 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 5 | ssel 3940 | . . . . . . . 8 ⊢ (dom 𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | 4, 5 | syl5 34 | . . . . . . 7 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 7 | 6 | ancrd 551 | . . . . . 6 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
| 8 | 3 | opelresi 5958 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 7, 8 | imbitrrdi 252 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
| 11 | 1, 10 | relssdv 5751 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐴 ↾ 𝐵)) |
| 12 | resss 5972 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 13 | 11, 12 | jctil 519 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) |
| 14 | eqss 3962 | . 2 ⊢ ((𝐴 ↾ 𝐵) = 𝐴 ↔ ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-res 5650 |
| This theorem is referenced by: resdm 5997 fnresdm 6637 focofo 6785 f1ompt 7083 tfr2b 8364 tz7.48-2 8410 omxpenlem 9042 pwfir 9266 rankwflemb 9746 zorn2lem4 10452 relexpaddg 15019 setscom 17150 setsid 17177 dprd2da 19974 dprd2db 19975 ustssco 24102 dvres3 25814 dvres3a 25815 rlimcnp2 26876 nolt02o 27607 nogt01o 27608 nosupbnd1 27626 noinfbnd1 27641 ex-res 30370 symgcom2 33041 poimirlem3 37617 relexpaddss 43707 fnresdmss 45162 limsupresuz 45701 liminfresuz 45782 isubgrvtxuhgr 47864 tposresg 48866 |
| Copyright terms: Public domain | W3C validator |