![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssres | Structured version Visualization version GIF version |
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
relssres | ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → Rel 𝐴) | |
2 | vex 3478 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
3 | vex 3478 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opeldm 5907 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | ssel 3975 | . . . . . . . 8 ⊢ (dom 𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | 4, 5 | syl5 34 | . . . . . . 7 ⊢ (dom 𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 6 | ancrd 552 | . . . . . 6 ⊢ (dom 𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))) |
8 | 3 | opelresi 5989 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
9 | 7, 8 | imbitrrdi 251 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵))) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵))) |
11 | 1, 10 | relssdv 5788 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐴 ↾ 𝐵)) |
12 | resss 6006 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
13 | 11, 12 | jctil 520 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) |
14 | eqss 3997 | . 2 ⊢ ((𝐴 ↾ 𝐵) = 𝐴 ↔ ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ⟨cop 4634 dom cdm 5676 ↾ cres 5678 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-res 5688 |
This theorem is referenced by: resdm 6026 fnresdm 6669 focofo 6818 f1ompt 7112 tfr2b 8398 tz7.48-2 8444 omxpenlem 9075 pwfir 9178 rankwflemb 9790 zorn2lem4 10496 relexpaddg 15002 setscom 17115 setsid 17143 dprd2da 19914 dprd2db 19915 ustssco 23726 dvres3 25437 dvres3a 25438 rlimcnp2 26478 nolt02o 27205 nogt01o 27206 nosupbnd1 27224 noinfbnd1 27239 ex-res 29732 symgcom2 32286 poimirlem3 36577 relexpaddss 42551 fnresdmss 43946 limsupresuz 44498 liminfresuz 44579 |
Copyright terms: Public domain | W3C validator |