| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssres | Structured version Visualization version GIF version | ||
| Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| relssres | ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → Rel 𝐴) | |
| 2 | vex 3440 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 3 | vex 3440 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opeldm 5846 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 5 | ssel 3923 | . . . . . . . 8 ⊢ (dom 𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | 4, 5 | syl5 34 | . . . . . . 7 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 7 | 6 | ancrd 551 | . . . . . 6 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
| 8 | 3 | opelresi 5935 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 7, 8 | imbitrrdi 252 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
| 11 | 1, 10 | relssdv 5727 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐴 ↾ 𝐵)) |
| 12 | resss 5949 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 13 | 11, 12 | jctil 519 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) |
| 14 | eqss 3945 | . 2 ⊢ ((𝐴 ↾ 𝐵) = 𝐴 ↔ ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 〈cop 4579 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 |
| This theorem is referenced by: resdm 5974 fnresdm 6600 focofo 6748 f1ompt 7044 tfr2b 8315 tz7.48-2 8361 omxpenlem 8991 pwfir 9201 rankwflemb 9686 zorn2lem4 10390 relexpaddg 14960 setscom 17091 setsid 17118 dprd2da 19956 dprd2db 19957 ustssco 24130 dvres3 25841 dvres3a 25842 rlimcnp2 26903 nolt02o 27634 nogt01o 27635 nosupbnd1 27653 noinfbnd1 27668 ex-res 30421 symgcom2 33053 fineqvnttrclse 35144 poimirlem3 37673 relexpaddss 43821 fnresdmss 45275 limsupresuz 45811 liminfresuz 45892 isubgrvtxuhgr 47974 tposresg 48988 |
| Copyright terms: Public domain | W3C validator |