![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssres | Structured version Visualization version GIF version |
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
relssres | ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → Rel 𝐴) | |
2 | vex 3478 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
3 | vex 3478 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opeldm 5905 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | ssel 3974 | . . . . . . . 8 ⊢ (dom 𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | 4, 5 | syl5 34 | . . . . . . 7 ⊢ (dom 𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 6 | ancrd 552 | . . . . . 6 ⊢ (dom 𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))) |
8 | 3 | opelresi 5987 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
9 | 7, 8 | syl6ibr 251 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵))) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ 𝐵))) |
11 | 1, 10 | relssdv 5786 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐴 ↾ 𝐵)) |
12 | resss 6004 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
13 | 11, 12 | jctil 520 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) |
14 | eqss 3996 | . 2 ⊢ ((𝐴 ↾ 𝐵) = 𝐴 ↔ ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 ⟨cop 4633 dom cdm 5675 ↾ cres 5677 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-dm 5685 df-res 5687 |
This theorem is referenced by: resdm 6024 fnresdm 6666 focofo 6815 f1ompt 7107 tfr2b 8392 tz7.48-2 8438 omxpenlem 9069 pwfir 9172 rankwflemb 9784 zorn2lem4 10490 relexpaddg 14996 setscom 17109 setsid 17137 dprd2da 19906 dprd2db 19907 ustssco 23710 dvres3 25421 dvres3a 25422 rlimcnp2 26460 nolt02o 27187 nogt01o 27188 nosupbnd1 27206 noinfbnd1 27221 ex-res 29683 symgcom2 32232 poimirlem3 36479 relexpaddss 42454 fnresdmss 43849 limsupresuz 44405 liminfresuz 44486 |
Copyright terms: Public domain | W3C validator |