MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssres Structured version   Visualization version   GIF version

Theorem relssres 5678
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)

Proof of Theorem relssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → Rel 𝐴)
2 vex 3417 . . . . . . . . 9 𝑥 ∈ V
3 vex 3417 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 5564 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
5 ssel 3821 . . . . . . . 8 (dom 𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥𝐵))
64, 5syl5 34 . . . . . . 7 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
76ancrd 547 . . . . . 6 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
83opelresi 5641 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
97, 8syl6ibr 244 . . . . 5 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
109adantl 475 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
111, 10relssdv 5450 . . 3 ((Rel 𝐴 ∧ dom 𝐴𝐵) → 𝐴 ⊆ (𝐴𝐵))
12 resss 5662 . . 3 (𝐴𝐵) ⊆ 𝐴
1311, 12jctil 515 . 2 ((Rel 𝐴 ∧ dom 𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
14 eqss 3842 . 2 ((𝐴𝐵) = 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
1513, 14sylibr 226 1 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wss 3798  cop 4405  dom cdm 5346  cres 5348  Rel wrel 5351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-br 4876  df-opab 4938  df-xp 5352  df-rel 5353  df-dm 5356  df-res 5358
This theorem is referenced by:  resdm  5682  fnresdm  6237  f1ompt  6635  tfr2b  7763  tz7.48-2  7808  omxpenlem  8336  rankwflemb  8940  zorn2lem4  9643  relexpaddg  14177  setscom  16273  setsid  16284  dprd2da  18802  dprd2db  18803  ustssco  22395  dvres3  24083  dvres3a  24084  rlimcnp2  25113  ex-res  27852  nolt02o  32379  nosupbnd1  32394  poimirlem3  33955  relexpaddss  38850  fnresdmss  40156  limsupresuz  40728  liminfresuz  40809
  Copyright terms: Public domain W3C validator