MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssres Structured version   Visualization version   GIF version

Theorem relssres 5982
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)

Proof of Theorem relssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → Rel 𝐴)
2 vex 3448 . . . . . . . . 9 𝑥 ∈ V
3 vex 3448 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 5861 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
5 ssel 3937 . . . . . . . 8 (dom 𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥𝐵))
64, 5syl5 34 . . . . . . 7 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
76ancrd 551 . . . . . 6 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
83opelresi 5947 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
97, 8imbitrrdi 252 . . . . 5 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
109adantl 481 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
111, 10relssdv 5742 . . 3 ((Rel 𝐴 ∧ dom 𝐴𝐵) → 𝐴 ⊆ (𝐴𝐵))
12 resss 5961 . . 3 (𝐴𝐵) ⊆ 𝐴
1311, 12jctil 519 . 2 ((Rel 𝐴 ∧ dom 𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
14 eqss 3959 . 2 ((𝐴𝐵) = 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
1513, 14sylibr 234 1 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  cop 4591  dom cdm 5631  cres 5633  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641  df-res 5643
This theorem is referenced by:  resdm  5986  fnresdm  6619  focofo  6767  f1ompt  7065  tfr2b  8341  tz7.48-2  8387  omxpenlem  9019  pwfir  9242  rankwflemb  9722  zorn2lem4  10428  relexpaddg  14995  setscom  17126  setsid  17153  dprd2da  19958  dprd2db  19959  ustssco  24135  dvres3  25847  dvres3a  25848  rlimcnp2  26909  nolt02o  27640  nogt01o  27641  nosupbnd1  27659  noinfbnd1  27674  ex-res  30420  symgcom2  33056  poimirlem3  37610  relexpaddss  43700  fnresdmss  45155  limsupresuz  45694  liminfresuz  45775  isubgrvtxuhgr  47857  tposresg  48859
  Copyright terms: Public domain W3C validator