MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssres Structured version   Visualization version   GIF version

Theorem relssres 5929
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)

Proof of Theorem relssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → Rel 𝐴)
2 vex 3434 . . . . . . . . 9 𝑥 ∈ V
3 vex 3434 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 5813 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
5 ssel 3918 . . . . . . . 8 (dom 𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥𝐵))
64, 5syl5 34 . . . . . . 7 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
76ancrd 551 . . . . . 6 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
83opelresi 5896 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
97, 8syl6ibr 251 . . . . 5 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
109adantl 481 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
111, 10relssdv 5695 . . 3 ((Rel 𝐴 ∧ dom 𝐴𝐵) → 𝐴 ⊆ (𝐴𝐵))
12 resss 5913 . . 3 (𝐴𝐵) ⊆ 𝐴
1311, 12jctil 519 . 2 ((Rel 𝐴 ∧ dom 𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
14 eqss 3940 . 2 ((𝐴𝐵) = 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
1513, 14sylibr 233 1 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wss 3891  cop 4572  dom cdm 5588  cres 5590  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-dm 5598  df-res 5600
This theorem is referenced by:  resdm  5933  fnresdm  6547  focofo  6697  f1ompt  6979  tfr2b  8211  tz7.48-2  8257  omxpenlem  8829  pwfir  8924  rankwflemb  9535  zorn2lem4  10239  relexpaddg  14745  setscom  16862  setsid  16890  dprd2da  19626  dprd2db  19627  ustssco  23347  dvres3  25058  dvres3a  25059  rlimcnp2  26097  ex-res  28784  symgcom2  31332  nolt02o  33877  nogt01o  33878  nosupbnd1  33896  noinfbnd1  33911  poimirlem3  35759  relexpaddss  41279  fnresdmss  42657  limsupresuz  43198  liminfresuz  43279
  Copyright terms: Public domain W3C validator