| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssres | Structured version Visualization version GIF version | ||
| Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| relssres | ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → Rel 𝐴) | |
| 2 | vex 3448 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 3 | vex 3448 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opeldm 5861 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 5 | ssel 3937 | . . . . . . . 8 ⊢ (dom 𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | 4, 5 | syl5 34 | . . . . . . 7 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 7 | 6 | ancrd 551 | . . . . . 6 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
| 8 | 3 | opelresi 5947 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 9 | 7, 8 | imbitrrdi 252 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
| 11 | 1, 10 | relssdv 5742 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐴 ↾ 𝐵)) |
| 12 | resss 5961 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 13 | 11, 12 | jctil 519 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) |
| 14 | eqss 3959 | . 2 ⊢ ((𝐴 ↾ 𝐵) = 𝐴 ↔ ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 〈cop 4591 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-res 5643 |
| This theorem is referenced by: resdm 5986 fnresdm 6619 focofo 6767 f1ompt 7065 tfr2b 8341 tz7.48-2 8387 omxpenlem 9019 pwfir 9242 rankwflemb 9722 zorn2lem4 10428 relexpaddg 14995 setscom 17126 setsid 17153 dprd2da 19958 dprd2db 19959 ustssco 24135 dvres3 25847 dvres3a 25848 rlimcnp2 26909 nolt02o 27640 nogt01o 27641 nosupbnd1 27659 noinfbnd1 27674 ex-res 30420 symgcom2 33056 poimirlem3 37610 relexpaddss 43700 fnresdmss 45155 limsupresuz 45694 liminfresuz 45775 isubgrvtxuhgr 47857 tposresg 48859 |
| Copyright terms: Public domain | W3C validator |