MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresv Structured version   Visualization version   GIF version

Theorem dmresv 6147
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dmresv dom (𝐴 ↾ V) = dom 𝐴

Proof of Theorem dmresv
StepHypRef Expression
1 dmres 5960 . 2 dom (𝐴 ↾ V) = (V ∩ dom 𝐴)
2 incom 4156 . 2 (V ∩ dom 𝐴) = (dom 𝐴 ∩ V)
3 inv1 4345 . 2 (dom 𝐴 ∩ V) = dom 𝐴
41, 2, 33eqtri 2758 1 dom (𝐴 ↾ V) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cin 3896  dom cdm 5614  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-dm 5624  df-res 5626
This theorem is referenced by:  fidomdm  9218  dmttrcl  9611  dmct  10415  dfsucmap3  38486
  Copyright terms: Public domain W3C validator