MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresv Structured version   Visualization version   GIF version

Theorem dmresv 6222
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dmresv dom (𝐴 ↾ V) = dom 𝐴

Proof of Theorem dmresv
StepHypRef Expression
1 dmres 6032 . 2 dom (𝐴 ↾ V) = (V ∩ dom 𝐴)
2 incom 4217 . 2 (V ∩ dom 𝐴) = (dom 𝐴 ∩ V)
3 inv1 4404 . 2 (dom 𝐴 ∩ V) = dom 𝐴
41, 2, 33eqtri 2767 1 dom (𝐴 ↾ V) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3478  cin 3962  dom cdm 5689  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-dm 5699  df-res 5701
This theorem is referenced by:  fidomdm  9372  dmttrcl  9759  dmct  10562
  Copyright terms: Public domain W3C validator