MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresv Structured version   Visualization version   GIF version

Theorem dmresv 6198
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dmresv dom (𝐴 ↾ V) = dom 𝐴

Proof of Theorem dmresv
StepHypRef Expression
1 dmres 6001 . 2 dom (𝐴 ↾ V) = (V ∩ dom 𝐴)
2 incom 4197 . 2 (V ∩ dom 𝐴) = (dom 𝐴 ∩ V)
3 inv1 4390 . 2 (dom 𝐴 ∩ V) = dom 𝐴
41, 2, 33eqtri 2759 1 dom (𝐴 ↾ V) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  Vcvv 3469  cin 3943  dom cdm 5672  cres 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-dm 5682  df-res 5684
This theorem is referenced by:  fidomdm  9347  dmttrcl  9738  dmct  10541
  Copyright terms: Public domain W3C validator