![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmresv | Structured version Visualization version GIF version |
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.) |
Ref | Expression |
---|---|
dmresv | ⊢ dom (𝐴 ↾ V) = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 6001 | . 2 ⊢ dom (𝐴 ↾ V) = (V ∩ dom 𝐴) | |
2 | incom 4197 | . 2 ⊢ (V ∩ dom 𝐴) = (dom 𝐴 ∩ V) | |
3 | inv1 4390 | . 2 ⊢ (dom 𝐴 ∩ V) = dom 𝐴 | |
4 | 1, 2, 3 | 3eqtri 2759 | 1 ⊢ dom (𝐴 ↾ V) = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 Vcvv 3469 ∩ cin 3943 dom cdm 5672 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-dm 5682 df-res 5684 |
This theorem is referenced by: fidomdm 9347 dmttrcl 9738 dmct 10541 |
Copyright terms: Public domain | W3C validator |