| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresv | Structured version Visualization version GIF version | ||
| Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.) |
| Ref | Expression |
|---|---|
| dmresv | ⊢ dom (𝐴 ↾ V) = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 6004 | . 2 ⊢ dom (𝐴 ↾ V) = (V ∩ dom 𝐴) | |
| 2 | incom 4189 | . 2 ⊢ (V ∩ dom 𝐴) = (dom 𝐴 ∩ V) | |
| 3 | inv1 4378 | . 2 ⊢ (dom 𝐴 ∩ V) = dom 𝐴 | |
| 4 | 1, 2, 3 | 3eqtri 2763 | 1 ⊢ dom (𝐴 ↾ V) = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∩ cin 3930 dom cdm 5659 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-res 5671 |
| This theorem is referenced by: fidomdm 9351 dmttrcl 9740 dmct 10543 |
| Copyright terms: Public domain | W3C validator |