MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresv Structured version   Visualization version   GIF version

Theorem dmresv 6092
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dmresv dom (𝐴 ↾ V) = dom 𝐴

Proof of Theorem dmresv
StepHypRef Expression
1 dmres 5902 . 2 dom (𝐴 ↾ V) = (V ∩ dom 𝐴)
2 incom 4131 . 2 (V ∩ dom 𝐴) = (dom 𝐴 ∩ V)
3 inv1 4325 . 2 (dom 𝐴 ∩ V) = dom 𝐴
41, 2, 33eqtri 2770 1 dom (𝐴 ↾ V) = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3422  cin 3882  dom cdm 5580  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-res 5592
This theorem is referenced by:  fidomdm  9026  dmct  10211  dmttrcl  33707
  Copyright terms: Public domain W3C validator