MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomdm Structured version   Visualization version   GIF version

Theorem fidomdm 9402
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
fidomdm (𝐹 ∈ Fin → dom 𝐹𝐹)

Proof of Theorem fidomdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmresv 6231 . 2 dom (𝐹 ↾ V) = dom 𝐹
2 finresfin 9332 . . . 4 (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin)
3 fvex 6933 . . . . . . 7 (1st𝑥) ∈ V
4 eqid 2740 . . . . . . 7 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
53, 4fnmpti 6723 . . . . . 6 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V)
6 dffn4 6840 . . . . . 6 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
75, 6mpbi 230 . . . . 5 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
8 relres 6035 . . . . . 6 Rel (𝐹 ↾ V)
9 reldm 8085 . . . . . 6 (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
10 foeq3 6832 . . . . . 6 (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))))
118, 9, 10mp2b 10 . . . . 5 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
127, 11mpbir 231 . . . 4 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)
13 fodomfi 9378 . . . 4 (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
142, 12, 13sylancl 585 . . 3 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
15 resss 6031 . . . 4 (𝐹 ↾ V) ⊆ 𝐹
16 ssdomg 9060 . . . 4 (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹))
1715, 16mpi 20 . . 3 (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹)
18 domtr 9067 . . 3 ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹)
1914, 17, 18syl2anc 583 . 2 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹)
201, 19eqbrtrrid 5202 1 (𝐹 ∈ Fin → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  Rel wrel 5705   Fn wfn 6568  ontowfo 6571  cfv 6573  1st c1st 8028  cdom 9001  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007
This theorem is referenced by:  dmfi  9403  hashfun  14486
  Copyright terms: Public domain W3C validator