![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fidomdm | Structured version Visualization version GIF version |
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
fidomdm | ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresv 5807 | . 2 ⊢ dom (𝐹 ↾ V) = dom 𝐹 | |
2 | finresfin 8426 | . . . 4 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin) | |
3 | fvex 6422 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
4 | eqid 2797 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) | |
5 | 3, 4 | fnmpti 6231 | . . . . . 6 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) |
6 | dffn4 6335 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
7 | 5, 6 | mpbi 222 | . . . . 5 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) |
8 | relres 5634 | . . . . . 6 ⊢ Rel (𝐹 ↾ V) | |
9 | reldm 7452 | . . . . . 6 ⊢ (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
10 | foeq3 6327 | . . . . . 6 ⊢ (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)))) | |
11 | 8, 9, 10 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) |
12 | 7, 11 | mpbir 223 | . . . 4 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) |
13 | fodomfi 8479 | . . . 4 ⊢ (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) | |
14 | 2, 12, 13 | sylancl 581 | . . 3 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) |
15 | resss 5630 | . . . 4 ⊢ (𝐹 ↾ V) ⊆ 𝐹 | |
16 | ssdomg 8239 | . . . 4 ⊢ (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹)) | |
17 | 15, 16 | mpi 20 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹) |
18 | domtr 8246 | . . 3 ⊢ ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹) | |
19 | 14, 17, 18 | syl2anc 580 | . 2 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹) |
20 | 1, 19 | syl5eqbrr 4877 | 1 ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ⊆ wss 3767 class class class wbr 4841 ↦ cmpt 4920 dom cdm 5310 ran crn 5311 ↾ cres 5312 Rel wrel 5315 Fn wfn 6094 –onto→wfo 6097 ‘cfv 6099 1st c1st 7397 ≼ cdom 8191 Fincfn 8193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-om 7298 df-1st 7399 df-2nd 7400 df-1o 7797 df-er 7980 df-en 8194 df-dom 8195 df-fin 8197 |
This theorem is referenced by: dmfi 8484 hashfun 13469 |
Copyright terms: Public domain | W3C validator |