| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fidomdm | Structured version Visualization version GIF version | ||
| Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| fidomdm | ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresv 6189 | . 2 ⊢ dom (𝐹 ↾ V) = dom 𝐹 | |
| 2 | finresfin 9276 | . . . 4 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin) | |
| 3 | fvex 6889 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
| 4 | eqid 2735 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) | |
| 5 | 3, 4 | fnmpti 6681 | . . . . . 6 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) |
| 6 | dffn4 6796 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
| 7 | 5, 6 | mpbi 230 | . . . . 5 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) |
| 8 | relres 5992 | . . . . . 6 ⊢ Rel (𝐹 ↾ V) | |
| 9 | reldm 8043 | . . . . . 6 ⊢ (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
| 10 | foeq3 6788 | . . . . . 6 ⊢ (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)))) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) |
| 12 | 7, 11 | mpbir 231 | . . . 4 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) |
| 13 | fodomfi 9322 | . . . 4 ⊢ (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) | |
| 14 | 2, 12, 13 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) |
| 15 | resss 5988 | . . . 4 ⊢ (𝐹 ↾ V) ⊆ 𝐹 | |
| 16 | ssdomg 9014 | . . . 4 ⊢ (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹)) | |
| 17 | 15, 16 | mpi 20 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹) |
| 18 | domtr 9021 | . . 3 ⊢ ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹) | |
| 19 | 14, 17, 18 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹) |
| 20 | 1, 19 | eqbrtrrid 5155 | 1 ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 ↾ cres 5656 Rel wrel 5659 Fn wfn 6526 –onto→wfo 6529 ‘cfv 6531 1st c1st 7986 ≼ cdom 8957 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-en 8960 df-dom 8961 df-fin 8963 |
| This theorem is referenced by: dmfi 9347 hashfun 14455 |
| Copyright terms: Public domain | W3C validator |