MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomdm Structured version   Visualization version   GIF version

Theorem fidomdm 9026
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
fidomdm (𝐹 ∈ Fin → dom 𝐹𝐹)

Proof of Theorem fidomdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmresv 6092 . 2 dom (𝐹 ↾ V) = dom 𝐹
2 finresfin 8974 . . . 4 (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin)
3 fvex 6769 . . . . . . 7 (1st𝑥) ∈ V
4 eqid 2738 . . . . . . 7 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
53, 4fnmpti 6560 . . . . . 6 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V)
6 dffn4 6678 . . . . . 6 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
75, 6mpbi 229 . . . . 5 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
8 relres 5909 . . . . . 6 Rel (𝐹 ↾ V)
9 reldm 7858 . . . . . 6 (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
10 foeq3 6670 . . . . . 6 (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))))
118, 9, 10mp2b 10 . . . . 5 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
127, 11mpbir 230 . . . 4 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)
13 fodomfi 9022 . . . 4 (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
142, 12, 13sylancl 585 . . 3 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
15 resss 5905 . . . 4 (𝐹 ↾ V) ⊆ 𝐹
16 ssdomg 8741 . . . 4 (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹))
1715, 16mpi 20 . . 3 (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹)
18 domtr 8748 . . 3 ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹)
1914, 17, 18syl2anc 583 . 2 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹)
201, 19eqbrtrrid 5106 1 (𝐹 ∈ Fin → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  Rel wrel 5585   Fn wfn 6413  ontowfo 6416  cfv 6418  1st c1st 7802  cdom 8689  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695
This theorem is referenced by:  dmfi  9027  hashfun  14080
  Copyright terms: Public domain W3C validator