MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomdm Structured version   Visualization version   GIF version

Theorem fidomdm 9346
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
fidomdm (𝐹 ∈ Fin → dom 𝐹𝐹)

Proof of Theorem fidomdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmresv 6189 . 2 dom (𝐹 ↾ V) = dom 𝐹
2 finresfin 9276 . . . 4 (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin)
3 fvex 6889 . . . . . . 7 (1st𝑥) ∈ V
4 eqid 2735 . . . . . . 7 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
53, 4fnmpti 6681 . . . . . 6 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V)
6 dffn4 6796 . . . . . 6 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
75, 6mpbi 230 . . . . 5 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
8 relres 5992 . . . . . 6 Rel (𝐹 ↾ V)
9 reldm 8043 . . . . . 6 (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
10 foeq3 6788 . . . . . 6 (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))))
118, 9, 10mp2b 10 . . . . 5 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
127, 11mpbir 231 . . . 4 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)
13 fodomfi 9322 . . . 4 (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
142, 12, 13sylancl 586 . . 3 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
15 resss 5988 . . . 4 (𝐹 ↾ V) ⊆ 𝐹
16 ssdomg 9014 . . . 4 (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹))
1715, 16mpi 20 . . 3 (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹)
18 domtr 9021 . . 3 ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹)
1914, 17, 18syl2anc 584 . 2 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹)
201, 19eqbrtrrid 5155 1 (𝐹 ∈ Fin → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cres 5656  Rel wrel 5659   Fn wfn 6526  ontowfo 6529  cfv 6531  1st c1st 7986  cdom 8957  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-en 8960  df-dom 8961  df-fin 8963
This theorem is referenced by:  dmfi  9347  hashfun  14455
  Copyright terms: Public domain W3C validator