| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fidomdm | Structured version Visualization version GIF version | ||
| Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| fidomdm | ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresv 6147 | . 2 ⊢ dom (𝐹 ↾ V) = dom 𝐹 | |
| 2 | finresfin 9156 | . . . 4 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin) | |
| 3 | fvex 6835 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) | |
| 5 | 3, 4 | fnmpti 6624 | . . . . . 6 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) |
| 6 | dffn4 6741 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
| 7 | 5, 6 | mpbi 230 | . . . . 5 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) |
| 8 | relres 5954 | . . . . . 6 ⊢ Rel (𝐹 ↾ V) | |
| 9 | reldm 7976 | . . . . . 6 ⊢ (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
| 10 | foeq3 6733 | . . . . . 6 ⊢ (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)))) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) |
| 12 | 7, 11 | mpbir 231 | . . . 4 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) |
| 13 | fodomfi 9196 | . . . 4 ⊢ (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) | |
| 14 | 2, 12, 13 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) |
| 15 | resss 5950 | . . . 4 ⊢ (𝐹 ↾ V) ⊆ 𝐹 | |
| 16 | ssdomg 8922 | . . . 4 ⊢ (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹)) | |
| 17 | 15, 16 | mpi 20 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹) |
| 18 | domtr 8929 | . . 3 ⊢ ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹) | |
| 19 | 14, 17, 18 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹) |
| 20 | 1, 19 | eqbrtrrid 5127 | 1 ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 ↾ cres 5618 Rel wrel 5621 Fn wfn 6476 –onto→wfo 6479 ‘cfv 6481 1st c1st 7919 ≼ cdom 8867 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-en 8870 df-dom 8871 df-fin 8873 |
| This theorem is referenced by: dmfi 9219 hashfun 14341 |
| Copyright terms: Public domain | W3C validator |