![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fidomdm | Structured version Visualization version GIF version |
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
fidomdm | ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresv 6231 | . 2 ⊢ dom (𝐹 ↾ V) = dom 𝐹 | |
2 | finresfin 9332 | . . . 4 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin) | |
3 | fvex 6933 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
4 | eqid 2740 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) | |
5 | 3, 4 | fnmpti 6723 | . . . . . 6 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) |
6 | dffn4 6840 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
7 | 5, 6 | mpbi 230 | . . . . 5 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) |
8 | relres 6035 | . . . . . 6 ⊢ Rel (𝐹 ↾ V) | |
9 | reldm 8085 | . . . . . 6 ⊢ (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
10 | foeq3 6832 | . . . . . 6 ⊢ (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)))) | |
11 | 8, 9, 10 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) |
12 | 7, 11 | mpbir 231 | . . . 4 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) |
13 | fodomfi 9378 | . . . 4 ⊢ (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) | |
14 | 2, 12, 13 | sylancl 585 | . . 3 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) |
15 | resss 6031 | . . . 4 ⊢ (𝐹 ↾ V) ⊆ 𝐹 | |
16 | ssdomg 9060 | . . . 4 ⊢ (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹)) | |
17 | 15, 16 | mpi 20 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹) |
18 | domtr 9067 | . . 3 ⊢ ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹) | |
19 | 14, 17, 18 | syl2anc 583 | . 2 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹) |
20 | 1, 19 | eqbrtrrid 5202 | 1 ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 ↾ cres 5702 Rel wrel 5705 Fn wfn 6568 –onto→wfo 6571 ‘cfv 6573 1st c1st 8028 ≼ cdom 9001 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-en 9004 df-dom 9005 df-fin 9007 |
This theorem is referenced by: dmfi 9403 hashfun 14486 |
Copyright terms: Public domain | W3C validator |