| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmct | Structured version Visualization version GIF version | ||
| Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| dmct | ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresv 6153 | . 2 ⊢ dom (𝐴 ↾ V) = dom 𝐴 | |
| 2 | resss 5956 | . . . . 5 ⊢ (𝐴 ↾ V) ⊆ 𝐴 | |
| 3 | ctex 8896 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 4 | ssexg 5265 | . . . . 5 ⊢ (((𝐴 ↾ V) ⊆ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ↾ V) ∈ V) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V) |
| 6 | fvex 6839 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) | |
| 8 | 6, 7 | fnmpti 6629 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) |
| 9 | dffn4 6746 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) |
| 11 | relres 5960 | . . . . . 6 ⊢ Rel (𝐴 ↾ V) | |
| 12 | reldm 7986 | . . . . . 6 ⊢ (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
| 13 | foeq3 6738 | . . . . . 6 ⊢ (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)))) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) |
| 15 | 10, 14 | mpbir 231 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) |
| 16 | fodomg 10435 | . . . 4 ⊢ ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))) | |
| 17 | 5, 15, 16 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)) |
| 18 | ssdomg 8932 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴)) | |
| 19 | 3, 2, 18 | mpisyl 21 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴) |
| 20 | domtr 8939 | . . . 4 ⊢ (((𝐴 ↾ V) ≼ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω) | |
| 21 | 19, 20 | mpancom 688 | . . 3 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω) |
| 22 | domtr 8939 | . . 3 ⊢ ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω) | |
| 23 | 17, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω) |
| 24 | 1, 23 | eqbrtrrid 5131 | 1 ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5623 ran crn 5624 ↾ cres 5625 Rel wrel 5628 Fn wfn 6481 –onto→wfo 6484 ‘cfv 6486 ωcom 7806 1st c1st 7929 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-ac2 10376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-card 9854 df-acn 9857 df-ac 10029 |
| This theorem is referenced by: rnct 10438 |
| Copyright terms: Public domain | W3C validator |