| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmct | Structured version Visualization version GIF version | ||
| Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| dmct | ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresv 6176 | . 2 ⊢ dom (𝐴 ↾ V) = dom 𝐴 | |
| 2 | resss 5975 | . . . . 5 ⊢ (𝐴 ↾ V) ⊆ 𝐴 | |
| 3 | ctex 8938 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 4 | ssexg 5281 | . . . . 5 ⊢ (((𝐴 ↾ V) ⊆ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ↾ V) ∈ V) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V) |
| 6 | fvex 6874 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) | |
| 8 | 6, 7 | fnmpti 6664 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) |
| 9 | dffn4 6781 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) |
| 11 | relres 5979 | . . . . . 6 ⊢ Rel (𝐴 ↾ V) | |
| 12 | reldm 8026 | . . . . . 6 ⊢ (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
| 13 | foeq3 6773 | . . . . . 6 ⊢ (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)))) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) |
| 15 | 10, 14 | mpbir 231 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) |
| 16 | fodomg 10482 | . . . 4 ⊢ ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))) | |
| 17 | 5, 15, 16 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)) |
| 18 | ssdomg 8974 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴)) | |
| 19 | 3, 2, 18 | mpisyl 21 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴) |
| 20 | domtr 8981 | . . . 4 ⊢ (((𝐴 ↾ V) ≼ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω) | |
| 21 | 19, 20 | mpancom 688 | . . 3 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω) |
| 22 | domtr 8981 | . . 3 ⊢ ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω) | |
| 23 | 17, 21, 22 | syl2anc 584 | . 2 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω) |
| 24 | 1, 23 | eqbrtrrid 5146 | 1 ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 ↾ cres 5643 Rel wrel 5646 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 ωcom 7845 1st c1st 7969 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-card 9899 df-acn 9902 df-ac 10076 |
| This theorem is referenced by: rnct 10485 |
| Copyright terms: Public domain | W3C validator |