Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmct | Structured version Visualization version GIF version |
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
dmct | ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresv 6092 | . 2 ⊢ dom (𝐴 ↾ V) = dom 𝐴 | |
2 | resss 5905 | . . . . 5 ⊢ (𝐴 ↾ V) ⊆ 𝐴 | |
3 | ctex 8708 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
4 | ssexg 5242 | . . . . 5 ⊢ (((𝐴 ↾ V) ⊆ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ↾ V) ∈ V) | |
5 | 2, 3, 4 | sylancr 586 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V) |
6 | fvex 6769 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
7 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) | |
8 | 6, 7 | fnmpti 6560 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) |
9 | dffn4 6678 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
10 | 8, 9 | mpbi 229 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) |
11 | relres 5909 | . . . . . 6 ⊢ Rel (𝐴 ↾ V) | |
12 | reldm 7858 | . . . . . 6 ⊢ (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
13 | foeq3 6670 | . . . . . 6 ⊢ (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)))) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) |
15 | 10, 14 | mpbir 230 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) |
16 | fodomg 10209 | . . . 4 ⊢ ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))) | |
17 | 5, 15, 16 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)) |
18 | ssdomg 8741 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴)) | |
19 | 3, 2, 18 | mpisyl 21 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴) |
20 | domtr 8748 | . . . 4 ⊢ (((𝐴 ↾ V) ≼ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω) | |
21 | 19, 20 | mpancom 684 | . . 3 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω) |
22 | domtr 8748 | . . 3 ⊢ ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω) | |
23 | 17, 21, 22 | syl2anc 583 | . 2 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω) |
24 | 1, 23 | eqbrtrrid 5106 | 1 ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ran crn 5581 ↾ cres 5582 Rel wrel 5585 Fn wfn 6413 –onto→wfo 6416 ‘cfv 6418 ωcom 7687 1st c1st 7802 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-card 9628 df-acn 9631 df-ac 9803 |
This theorem is referenced by: rnct 10212 |
Copyright terms: Public domain | W3C validator |