MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmct Structured version   Visualization version   GIF version

Theorem dmct 10501
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
dmct (𝐴 ≼ ω → dom 𝐴 ≼ ω)

Proof of Theorem dmct
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmresv 6188 . 2 dom (𝐴 ↾ V) = dom 𝐴
2 resss 5998 . . . . 5 (𝐴 ↾ V) ⊆ 𝐴
3 ctex 8942 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
4 ssexg 5316 . . . . 5 (((𝐴 ↾ V) ⊆ 𝐴𝐴 ∈ V) → (𝐴 ↾ V) ∈ V)
52, 3, 4sylancr 587 . . . 4 (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V)
6 fvex 6891 . . . . . . 7 (1st𝑥) ∈ V
7 eqid 2731 . . . . . . 7 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))
86, 7fnmpti 6680 . . . . . 6 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) Fn (𝐴 ↾ V)
9 dffn4 6798 . . . . . 6 ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
108, 9mpbi 229 . . . . 5 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))
11 relres 6002 . . . . . 6 Rel (𝐴 ↾ V)
12 reldm 8012 . . . . . 6 (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
13 foeq3 6790 . . . . . 6 (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))))
1411, 12, 13mp2b 10 . . . . 5 ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
1510, 14mpbir 230 . . . 4 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V)
16 fodomg 10499 . . . 4 ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)))
175, 15, 16mpisyl 21 . . 3 (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))
18 ssdomg 8979 . . . . 5 (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴))
193, 2, 18mpisyl 21 . . . 4 (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴)
20 domtr 8986 . . . 4 (((𝐴 ↾ V) ≼ 𝐴𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω)
2119, 20mpancom 686 . . 3 (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω)
22 domtr 8986 . . 3 ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω)
2317, 21, 22syl2anc 584 . 2 (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω)
241, 23eqbrtrrid 5177 1 (𝐴 ≼ ω → dom 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  Vcvv 3473  wss 3944   class class class wbr 5141  cmpt 5224  dom cdm 5669  ran crn 5670  cres 5671  Rel wrel 5674   Fn wfn 6527  ontowfo 6530  cfv 6532  ωcom 7838  1st c1st 7955  cdom 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-ac2 10440
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-card 9916  df-acn 9919  df-ac 10093
This theorem is referenced by:  rnct  10502
  Copyright terms: Public domain W3C validator