MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmct Structured version   Visualization version   GIF version

Theorem dmct 10424
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
dmct (𝐴 ≼ ω → dom 𝐴 ≼ ω)

Proof of Theorem dmct
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmresv 6154 . 2 dom (𝐴 ↾ V) = dom 𝐴
2 resss 5956 . . . . 5 (𝐴 ↾ V) ⊆ 𝐴
3 ctex 8894 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
4 ssexg 5265 . . . . 5 (((𝐴 ↾ V) ⊆ 𝐴𝐴 ∈ V) → (𝐴 ↾ V) ∈ V)
52, 3, 4sylancr 587 . . . 4 (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V)
6 fvex 6843 . . . . . . 7 (1st𝑥) ∈ V
7 eqid 2733 . . . . . . 7 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))
86, 7fnmpti 6631 . . . . . 6 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) Fn (𝐴 ↾ V)
9 dffn4 6748 . . . . . 6 ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
108, 9mpbi 230 . . . . 5 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))
11 relres 5960 . . . . . 6 Rel (𝐴 ↾ V)
12 reldm 7984 . . . . . 6 (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
13 foeq3 6740 . . . . . 6 (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))))
1411, 12, 13mp2b 10 . . . . 5 ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
1510, 14mpbir 231 . . . 4 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V)
16 fodomg 10422 . . . 4 ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)))
175, 15, 16mpisyl 21 . . 3 (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))
18 ssdomg 8931 . . . . 5 (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴))
193, 2, 18mpisyl 21 . . . 4 (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴)
20 domtr 8938 . . . 4 (((𝐴 ↾ V) ≼ 𝐴𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω)
2119, 20mpancom 688 . . 3 (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω)
22 domtr 8938 . . 3 ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω)
2317, 21, 22syl2anc 584 . 2 (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω)
241, 23eqbrtrrid 5131 1 (𝐴 ≼ ω → dom 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622  cres 5623  Rel wrel 5626   Fn wfn 6483  ontowfo 6486  cfv 6488  ωcom 7804  1st c1st 7927  cdom 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-ac2 10363
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-card 9841  df-acn 9844  df-ac 10016
This theorem is referenced by:  rnct  10425
  Copyright terms: Public domain W3C validator