![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmct | Structured version Visualization version GIF version |
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
dmct | ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresv 5807 | . 2 ⊢ dom (𝐴 ↾ V) = dom 𝐴 | |
2 | resss 5630 | . . . . 5 ⊢ (𝐴 ↾ V) ⊆ 𝐴 | |
3 | ctex 8208 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
4 | ssexg 4997 | . . . . 5 ⊢ (((𝐴 ↾ V) ⊆ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ↾ V) ∈ V) | |
5 | 2, 3, 4 | sylancr 582 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V) |
6 | fvex 6422 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
7 | eqid 2797 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) | |
8 | 6, 7 | fnmpti 6231 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) |
9 | dffn4 6335 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
10 | 8, 9 | mpbi 222 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) |
11 | relres 5634 | . . . . . 6 ⊢ Rel (𝐴 ↾ V) | |
12 | reldm 7452 | . . . . . 6 ⊢ (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
13 | foeq3 6327 | . . . . . 6 ⊢ (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)))) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) |
15 | 10, 14 | mpbir 223 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) |
16 | fodomg 9631 | . . . 4 ⊢ ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))) | |
17 | 5, 15, 16 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)) |
18 | ssdomg 8239 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴)) | |
19 | 3, 2, 18 | mpisyl 21 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴) |
20 | domtr 8246 | . . . 4 ⊢ (((𝐴 ↾ V) ≼ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω) | |
21 | 19, 20 | mpancom 680 | . . 3 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω) |
22 | domtr 8246 | . . 3 ⊢ ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω) | |
23 | 17, 21, 22 | syl2anc 580 | . 2 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω) |
24 | 1, 23 | syl5eqbrr 4877 | 1 ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ⊆ wss 3767 class class class wbr 4841 ↦ cmpt 4920 dom cdm 5310 ran crn 5311 ↾ cres 5312 Rel wrel 5315 Fn wfn 6094 –onto→wfo 6097 ‘cfv 6099 ωcom 7297 1st c1st 7397 ≼ cdom 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-ac2 9571 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-card 9049 df-acn 9052 df-ac 9223 |
This theorem is referenced by: rnct 9633 |
Copyright terms: Public domain | W3C validator |