MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvsn Structured version   Visualization version   GIF version

Theorem cnvcnvsn 6166
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 6173, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6052 . 2 Rel {⟨𝐴, 𝐵⟩}
2 relcnv 6052 . 2 Rel {⟨𝐵, 𝐴⟩}
3 vex 3440 . . . 4 𝑥 ∈ V
4 vex 3440 . . . 4 𝑦 ∈ V
53, 4opelcnv 5820 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
6 ancom 460 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑦 = 𝐵𝑥 = 𝐴))
73, 4opth 5414 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
84, 3opth 5414 . . . . . 6 (⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑦 = 𝐵𝑥 = 𝐴))
96, 7, 83bitr4i 303 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩)
10 opex 5402 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1110elsn 4588 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
12 opex 5402 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1312elsn 4588 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩)
149, 11, 133bitr4i 303 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
154, 3opelcnv 5820 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
163, 4opelcnv 5820 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
1714, 15, 163bitr4i 303 . . 3 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
185, 17bitri 275 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
191, 2, 18eqrelriiv 5729 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {csn 4573  cop 4579  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by:  rnsnopg  6168  cnvsng  6170
  Copyright terms: Public domain W3C validator