| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvsn | Structured version Visualization version GIF version | ||
| Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 6215, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| cnvcnvsn | ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6091 | . 2 ⊢ Rel ◡◡{〈𝐴, 𝐵〉} | |
| 2 | relcnv 6091 | . 2 ⊢ Rel ◡{〈𝐵, 𝐴〉} | |
| 3 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | vex 3463 | . . . 4 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | opelcnv 5861 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉}) |
| 6 | ancom 460 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) | |
| 7 | 3, 4 | opth 5451 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 8 | 4, 3 | opth 5451 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉 ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) |
| 9 | 6, 7, 8 | 3bitr4i 303 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉) |
| 10 | opex 5439 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 11 | 10 | elsn 4616 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 12 | opex 5439 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V | |
| 13 | 12 | elsn 4616 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉} ↔ 〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉) |
| 14 | 9, 11, 13 | 3bitr4i 303 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉}) |
| 15 | 4, 3 | opelcnv 5861 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
| 16 | 3, 4 | opelcnv 5861 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉}) |
| 17 | 14, 15, 16 | 3bitr4i 303 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉}) |
| 18 | 5, 17 | bitri 275 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉}) |
| 19 | 1, 2, 18 | eqrelriiv 5769 | 1 ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: rnsnopg 6210 cnvsng 6212 |
| Copyright terms: Public domain | W3C validator |