MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvsn Structured version   Visualization version   GIF version

Theorem cnvcnvsn 6175
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 6182, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6060 . 2 Rel {⟨𝐴, 𝐵⟩}
2 relcnv 6060 . 2 Rel {⟨𝐵, 𝐴⟩}
3 vex 3451 . . . 4 𝑥 ∈ V
4 vex 3451 . . . 4 𝑦 ∈ V
53, 4opelcnv 5841 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
6 ancom 462 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑦 = 𝐵𝑥 = 𝐴))
73, 4opth 5437 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
84, 3opth 5437 . . . . . 6 (⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑦 = 𝐵𝑥 = 𝐴))
96, 7, 83bitr4i 303 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩)
10 opex 5425 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1110elsn 4605 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
12 opex 5425 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1312elsn 4605 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩)
149, 11, 133bitr4i 303 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
154, 3opelcnv 5841 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
163, 4opelcnv 5841 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
1714, 15, 163bitr4i 303 . . 3 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
185, 17bitri 275 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
191, 2, 18eqrelriiv 5750 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  {csn 4590  cop 4596  ccnv 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-cnv 5645
This theorem is referenced by:  rnsnopg  6177  cnvsng  6179
  Copyright terms: Public domain W3C validator