Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvcnvsn | Structured version Visualization version GIF version |
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 6118, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvcnvsn | ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6001 | . 2 ⊢ Rel ◡◡{〈𝐴, 𝐵〉} | |
2 | relcnv 6001 | . 2 ⊢ Rel ◡{〈𝐵, 𝐴〉} | |
3 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 3426 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 5779 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉}) |
6 | ancom 460 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) | |
7 | 3, 4 | opth 5385 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
8 | 4, 3 | opth 5385 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉 ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) |
9 | 6, 7, 8 | 3bitr4i 302 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉) |
10 | opex 5373 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
11 | 10 | elsn 4573 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
12 | opex 5373 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V | |
13 | 12 | elsn 4573 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉} ↔ 〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉) |
14 | 9, 11, 13 | 3bitr4i 302 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉}) |
15 | 4, 3 | opelcnv 5779 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
16 | 3, 4 | opelcnv 5779 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉}) |
17 | 14, 15, 16 | 3bitr4i 302 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉}) |
18 | 5, 17 | bitri 274 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉}) |
19 | 1, 2, 18 | eqrelriiv 5689 | 1 ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: rnsnopg 6113 cnvsng 6115 |
Copyright terms: Public domain | W3C validator |