![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnvsn | Structured version Visualization version GIF version |
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 6225, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvcnvsn | ⊢ ◡◡{⟨𝐴, 𝐵⟩} = ◡{⟨𝐵, 𝐴⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6103 | . 2 ⊢ Rel ◡◡{⟨𝐴, 𝐵⟩} | |
2 | relcnv 6103 | . 2 ⊢ Rel ◡{⟨𝐵, 𝐴⟩} | |
3 | vex 3478 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 3478 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 5881 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ ◡{⟨𝐴, 𝐵⟩}) |
6 | ancom 461 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) | |
7 | 3, 4 | opth 5476 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
8 | 4, 3 | opth 5476 | . . . . . 6 ⊢ (⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) |
9 | 6, 7, 8 | 3bitr4i 302 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩) |
10 | opex 5464 | . . . . . 6 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
11 | 10 | elsn 4643 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩) |
12 | opex 5464 | . . . . . 6 ⊢ ⟨𝑦, 𝑥⟩ ∈ V | |
13 | 12 | elsn 4643 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩) |
14 | 9, 11, 13 | 3bitr4i 302 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩}) |
15 | 4, 3 | opelcnv 5881 | . . . 4 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}) |
16 | 3, 4 | opelcnv 5881 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡{⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩}) |
17 | 14, 15, 16 | 3bitr4i 302 | . . 3 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ ◡{⟨𝐵, 𝐴⟩}) |
18 | 5, 17 | bitri 274 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡◡{⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ ◡{⟨𝐵, 𝐴⟩}) |
19 | 1, 2, 18 | eqrelriiv 5790 | 1 ⊢ ◡◡{⟨𝐴, 𝐵⟩} = ◡{⟨𝐵, 𝐴⟩} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4628 ⟨cop 4634 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 |
This theorem is referenced by: rnsnopg 6220 cnvsng 6222 |
Copyright terms: Public domain | W3C validator |