![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnvsn | Structured version Visualization version GIF version |
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 6248, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvcnvsn | ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6125 | . 2 ⊢ Rel ◡◡{〈𝐴, 𝐵〉} | |
2 | relcnv 6125 | . 2 ⊢ Rel ◡{〈𝐵, 𝐴〉} | |
3 | vex 3482 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 3482 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 5895 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉}) |
6 | ancom 460 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) | |
7 | 3, 4 | opth 5487 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
8 | 4, 3 | opth 5487 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉 ↔ (𝑦 = 𝐵 ∧ 𝑥 = 𝐴)) |
9 | 6, 7, 8 | 3bitr4i 303 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉) |
10 | opex 5475 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
11 | 10 | elsn 4646 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
12 | opex 5475 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V | |
13 | 12 | elsn 4646 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉} ↔ 〈𝑦, 𝑥〉 = 〈𝐵, 𝐴〉) |
14 | 9, 11, 13 | 3bitr4i 303 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉}) |
15 | 4, 3 | opelcnv 5895 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
16 | 3, 4 | opelcnv 5895 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉} ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐵, 𝐴〉}) |
17 | 14, 15, 16 | 3bitr4i 303 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ ◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉}) |
18 | 5, 17 | bitri 275 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡{〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 ∈ ◡{〈𝐵, 𝐴〉}) |
19 | 1, 2, 18 | eqrelriiv 5803 | 1 ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 {csn 4631 〈cop 4637 ◡ccnv 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 |
This theorem is referenced by: rnsnopg 6243 cnvsng 6245 |
Copyright terms: Public domain | W3C validator |