MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fntp Structured version   Visualization version   GIF version

Theorem fntp 6577
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1 𝐴 ∈ V
fntp.2 𝐵 ∈ V
fntp.3 𝐶 ∈ V
fntp.4 𝐷 ∈ V
fntp.5 𝐸 ∈ V
fntp.6 𝐹 ∈ V
Assertion
Ref Expression
fntp ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3 𝐴 ∈ V
2 fntp.2 . . 3 𝐵 ∈ V
3 fntp.3 . . 3 𝐶 ∈ V
4 fntp.4 . . 3 𝐷 ∈ V
5 fntp.5 . . 3 𝐸 ∈ V
6 fntp.6 . . 3 𝐹 ∈ V
71, 2, 3, 4, 5, 6funtp 6573 . 2 ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
84, 5, 6dmtpop 6191 . 2 dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}
9 df-fn 6514 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ∧ dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}))
107, 8, 9sylanblrc 590 1 ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  {ctp 4593  cop 4595  dom cdm 5638  Fun wfun 6505   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-fun 6513  df-fn 6514
This theorem is referenced by:  fntpb  7183  rabren3dioph  42803
  Copyright terms: Public domain W3C validator