| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fntp | Structured version Visualization version GIF version | ||
| Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| fntp.1 | ⊢ 𝐴 ∈ V |
| fntp.2 | ⊢ 𝐵 ∈ V |
| fntp.3 | ⊢ 𝐶 ∈ V |
| fntp.4 | ⊢ 𝐷 ∈ V |
| fntp.5 | ⊢ 𝐸 ∈ V |
| fntp.6 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| fntp | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fntp.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | fntp.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | fntp.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | fntp.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 5 | fntp.5 | . . 3 ⊢ 𝐸 ∈ V | |
| 6 | fntp.6 | . . 3 ⊢ 𝐹 ∈ V | |
| 7 | 1, 2, 3, 4, 5, 6 | funtp 6576 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) |
| 8 | 4, 5, 6 | dmtpop 6194 | . 2 ⊢ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶} |
| 9 | df-fn 6517 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} ∧ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶})) | |
| 10 | 7, 8, 9 | sylanblrc 590 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 {ctp 4596 〈cop 4598 dom cdm 5641 Fun wfun 6508 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fntpb 7186 rabren3dioph 42810 |
| Copyright terms: Public domain | W3C validator |