Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fntp | Structured version Visualization version GIF version |
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
fntp.1 | ⊢ 𝐴 ∈ V |
fntp.2 | ⊢ 𝐵 ∈ V |
fntp.3 | ⊢ 𝐶 ∈ V |
fntp.4 | ⊢ 𝐷 ∈ V |
fntp.5 | ⊢ 𝐸 ∈ V |
fntp.6 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
fntp | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fntp.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | fntp.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | fntp.3 | . . 3 ⊢ 𝐶 ∈ V | |
4 | fntp.4 | . . 3 ⊢ 𝐷 ∈ V | |
5 | fntp.5 | . . 3 ⊢ 𝐸 ∈ V | |
6 | fntp.6 | . . 3 ⊢ 𝐹 ∈ V | |
7 | 1, 2, 3, 4, 5, 6 | funtp 6475 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) |
8 | 4, 5, 6 | dmtpop 6110 | . 2 ⊢ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶} |
9 | df-fn 6421 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} ∧ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶})) | |
10 | 7, 8, 9 | sylanblrc 589 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 {ctp 4562 〈cop 4564 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fntpb 7067 rabren3dioph 40553 |
Copyright terms: Public domain | W3C validator |