| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fntp | Structured version Visualization version GIF version | ||
| Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| fntp.1 | ⊢ 𝐴 ∈ V |
| fntp.2 | ⊢ 𝐵 ∈ V |
| fntp.3 | ⊢ 𝐶 ∈ V |
| fntp.4 | ⊢ 𝐷 ∈ V |
| fntp.5 | ⊢ 𝐸 ∈ V |
| fntp.6 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| fntp | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fntp.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | fntp.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | fntp.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | fntp.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 5 | fntp.5 | . . 3 ⊢ 𝐸 ∈ V | |
| 6 | fntp.6 | . . 3 ⊢ 𝐹 ∈ V | |
| 7 | 1, 2, 3, 4, 5, 6 | funtp 6593 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) |
| 8 | 4, 5, 6 | dmtpop 6207 | . 2 ⊢ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶} |
| 9 | df-fn 6534 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} ∧ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶})) | |
| 10 | 7, 8, 9 | sylanblrc 590 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 {ctp 4605 〈cop 4607 dom cdm 5654 Fun wfun 6525 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: fntpb 7201 rabren3dioph 42838 |
| Copyright terms: Public domain | W3C validator |