MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fntp Structured version   Visualization version   GIF version

Theorem fntp 6600
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1 𝐴 ∈ V
fntp.2 𝐵 ∈ V
fntp.3 𝐶 ∈ V
fntp.4 𝐷 ∈ V
fntp.5 𝐸 ∈ V
fntp.6 𝐹 ∈ V
Assertion
Ref Expression
fntp ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3 𝐴 ∈ V
2 fntp.2 . . 3 𝐵 ∈ V
3 fntp.3 . . 3 𝐶 ∈ V
4 fntp.4 . . 3 𝐷 ∈ V
5 fntp.5 . . 3 𝐸 ∈ V
6 fntp.6 . . 3 𝐹 ∈ V
71, 2, 3, 4, 5, 6funtp 6596 . 2 ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
84, 5, 6dmtpop 6208 . 2 dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}
9 df-fn 6537 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ∧ dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}))
107, 8, 9sylanblrc 589 1 ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  {ctp 4625  cop 4627  dom cdm 5667  Fun wfun 6528   Fn wfn 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-fun 6536  df-fn 6537
This theorem is referenced by:  fntpb  7203  rabren3dioph  42067
  Copyright terms: Public domain W3C validator