MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxpin Structured version   Visualization version   GIF version

Theorem dmxpin 5956
Description: The domain of the intersection of two Cartesian squares. Unlike in dmin 5936, equality holds. (Contributed by NM, 29-Jan-2008.)
Assertion
Ref Expression
dmxpin dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴𝐵)

Proof of Theorem dmxpin
StepHypRef Expression
1 inxp 5856 . . 3 ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = ((𝐴𝐵) × (𝐴𝐵))
21dmeqi 5929 . 2 dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = dom ((𝐴𝐵) × (𝐴𝐵))
3 dmxpid 5955 . 2 dom ((𝐴𝐵) × (𝐴𝐵)) = (𝐴𝐵)
42, 3eqtri 2768 1 dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3975   × cxp 5698  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator