Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmxpin | Structured version Visualization version GIF version |
Description: The domain of the intersection of two Cartesian squares. Unlike in dmin 5752, equality holds. (Contributed by NM, 29-Jan-2008.) |
Ref | Expression |
---|---|
dmxpin | ⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxp 5673 | . . 3 ⊢ ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = ((𝐴 ∩ 𝐵) × (𝐴 ∩ 𝐵)) | |
2 | 1 | dmeqi 5745 | . 2 ⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = dom ((𝐴 ∩ 𝐵) × (𝐴 ∩ 𝐵)) |
3 | dmxpid 5772 | . 2 ⊢ dom ((𝐴 ∩ 𝐵) × (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) | |
4 | 2, 3 | eqtri 2782 | 1 ⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3858 × cxp 5523 dom cdm 5525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-dm 5535 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |