MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrh2 Structured version   Visualization version   GIF version

Theorem znzrh2 20665
Description: The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znzrh2.s 𝑆 = (RSpan‘ℤring)
znzrh2.r = (ℤring ~QG (𝑆‘{𝑁}))
znzrh2.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrh2.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrh2 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Distinct variable groups:   𝑥,𝑁   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝐿(𝑥)   𝑌(𝑥)

Proof of Theorem znzrh2
StepHypRef Expression
1 znzrh2.2 . 2 𝐿 = (ℤRHom‘𝑌)
2 zringring 20585 . . . . 5 ring ∈ Ring
3 nn0z 12273 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 znzrh2.s . . . . . . 7 𝑆 = (RSpan‘ℤring)
54znlidl 20649 . . . . . 6 (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
63, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
7 znzrh2.r . . . . . . 7 = (ℤring ~QG (𝑆‘{𝑁}))
87oveq2i 7266 . . . . . 6 (ℤring /s ) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
9 zringcrng 20584 . . . . . . 7 ring ∈ CRing
10 eqid 2738 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
1110crng2idl 20423 . . . . . . 7 (ℤring ∈ CRing → (LIdeal‘ℤring) = (2Ideal‘ℤring))
129, 11ax-mp 5 . . . . . 6 (LIdeal‘ℤring) = (2Ideal‘ℤring)
13 zringbas 20588 . . . . . 6 ℤ = (Base‘ℤring)
14 eceq2 8496 . . . . . . . 8 ( = (ℤring ~QG (𝑆‘{𝑁})) → [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁})))
157, 14ax-mp 5 . . . . . . 7 [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁}))
1615mpteq2i 5175 . . . . . 6 (𝑥 ∈ ℤ ↦ [𝑥] ) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG (𝑆‘{𝑁})))
178, 12, 13, 16qusrhm 20421 . . . . 5 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
182, 6, 17sylancr 586 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
194, 8zncrng2 20650 . . . . 5 (𝑁 ∈ ℤ → (ℤring /s ) ∈ CRing)
20 crngring 19710 . . . . 5 ((ℤring /s ) ∈ CRing → (ℤring /s ) ∈ Ring)
21 eqid 2738 . . . . . 6 (ℤRHom‘(ℤring /s )) = (ℤRHom‘(ℤring /s ))
2221zrhrhmb 20624 . . . . 5 ((ℤring /s ) ∈ Ring → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
233, 19, 20, 224syl 19 . . . 4 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
2418, 23mpbid 231 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s )))
25 znzrh2.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
264, 8, 25znzrh 20662 . . 3 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s )) = (ℤRHom‘𝑌))
2724, 26eqtr2d 2779 . 2 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑥 ∈ ℤ ↦ [𝑥] ))
281, 27eqtrid 2790 1 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  [cec 8454  0cn0 12163  cz 12249   /s cqus 17133   ~QG cqg 18666  Ringcrg 19698  CRingccrg 19699   RingHom crh 19871  LIdealclidl 20347  RSpancrsp 20348  2Idealc2idl 20415  ringzring 20582  ℤRHomczrh 20613  ℤ/nczn 20616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620
This theorem is referenced by:  znzrhval  20666  znzrhfo  20667
  Copyright terms: Public domain W3C validator