MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrh2 Structured version   Visualization version   GIF version

Theorem znzrh2 20326
Description: The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znzrh2.s 𝑆 = (RSpan‘ℤring)
znzrh2.r = (ℤring ~QG (𝑆‘{𝑁}))
znzrh2.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrh2.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrh2 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Distinct variable groups:   𝑥,𝑁   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝐿(𝑥)   𝑌(𝑥)

Proof of Theorem znzrh2
StepHypRef Expression
1 znzrh2.2 . 2 𝐿 = (ℤRHom‘𝑌)
2 zringring 20254 . . . . 5 ring ∈ Ring
3 nn0z 12057 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 znzrh2.s . . . . . . 7 𝑆 = (RSpan‘ℤring)
54znlidl 20314 . . . . . 6 (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
63, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
7 znzrh2.r . . . . . . 7 = (ℤring ~QG (𝑆‘{𝑁}))
87oveq2i 7167 . . . . . 6 (ℤring /s ) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
9 zringcrng 20253 . . . . . . 7 ring ∈ CRing
10 eqid 2758 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
1110crng2idl 20093 . . . . . . 7 (ℤring ∈ CRing → (LIdeal‘ℤring) = (2Ideal‘ℤring))
129, 11ax-mp 5 . . . . . 6 (LIdeal‘ℤring) = (2Ideal‘ℤring)
13 zringbas 20257 . . . . . 6 ℤ = (Base‘ℤring)
14 eceq2 8345 . . . . . . . 8 ( = (ℤring ~QG (𝑆‘{𝑁})) → [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁})))
157, 14ax-mp 5 . . . . . . 7 [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁}))
1615mpteq2i 5128 . . . . . 6 (𝑥 ∈ ℤ ↦ [𝑥] ) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG (𝑆‘{𝑁})))
178, 12, 13, 16qusrhm 20091 . . . . 5 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
182, 6, 17sylancr 590 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
194, 8zncrng2 20315 . . . . 5 (𝑁 ∈ ℤ → (ℤring /s ) ∈ CRing)
20 crngring 19390 . . . . 5 ((ℤring /s ) ∈ CRing → (ℤring /s ) ∈ Ring)
21 eqid 2758 . . . . . 6 (ℤRHom‘(ℤring /s )) = (ℤRHom‘(ℤring /s ))
2221zrhrhmb 20293 . . . . 5 ((ℤring /s ) ∈ Ring → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
233, 19, 20, 224syl 19 . . . 4 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
2418, 23mpbid 235 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s )))
25 znzrh2.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
264, 8, 25znzrh 20323 . . 3 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s )) = (ℤRHom‘𝑌))
2724, 26eqtr2d 2794 . 2 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑥 ∈ ℤ ↦ [𝑥] ))
281, 27syl5eq 2805 1 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  {csn 4525  cmpt 5116  cfv 6340  (class class class)co 7156  [cec 8303  0cn0 11947  cz 12033   /s cqus 16849   ~QG cqg 18355  Ringcrg 19378  CRingccrg 19379   RingHom crh 19548  LIdealclidl 20023  RSpancrsp 20024  2Idealc2idl 20085  ringzring 20251  ℤRHomczrh 20282  ℤ/nczn 20285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-ec 8307  df-qs 8311  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-seq 13432  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-starv 16651  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-0g 16786  df-imas 16852  df-qus 16853  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-grp 18185  df-minusg 18186  df-sbg 18187  df-mulg 18305  df-subg 18356  df-nsg 18357  df-eqg 18358  df-ghm 18436  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-cring 19381  df-oppr 19457  df-rnghom 19551  df-subrg 19614  df-lmod 19717  df-lss 19785  df-lsp 19825  df-sra 20025  df-rgmod 20026  df-lidl 20027  df-rsp 20028  df-2idl 20086  df-cnfld 20180  df-zring 20252  df-zrh 20286  df-zn 20289
This theorem is referenced by:  znzrhval  20327  znzrhfo  20328
  Copyright terms: Public domain W3C validator