![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znzrh2 | Structured version Visualization version GIF version |
Description: The β€ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znzrh2.s | β’ π = (RSpanββ€ring) |
znzrh2.r | β’ βΌ = (β€ring ~QG (πβ{π})) |
znzrh2.y | β’ π = (β€/nβ€βπ) |
znzrh2.2 | β’ πΏ = (β€RHomβπ) |
Ref | Expression |
---|---|
znzrh2 | β’ (π β β0 β πΏ = (π₯ β β€ β¦ [π₯] βΌ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znzrh2.2 | . 2 β’ πΏ = (β€RHomβπ) | |
2 | zringring 21222 | . . . . 5 β’ β€ring β Ring | |
3 | nn0z 12589 | . . . . . 6 β’ (π β β0 β π β β€) | |
4 | znzrh2.s | . . . . . . 7 β’ π = (RSpanββ€ring) | |
5 | 4 | znlidl 21306 | . . . . . 6 β’ (π β β€ β (πβ{π}) β (LIdealββ€ring)) |
6 | 3, 5 | syl 17 | . . . . 5 β’ (π β β0 β (πβ{π}) β (LIdealββ€ring)) |
7 | znzrh2.r | . . . . . . 7 β’ βΌ = (β€ring ~QG (πβ{π})) | |
8 | 7 | oveq2i 7424 | . . . . . 6 β’ (β€ring /s βΌ ) = (β€ring /s (β€ring ~QG (πβ{π}))) |
9 | zringcrng 21221 | . . . . . . 7 β’ β€ring β CRing | |
10 | eqid 2730 | . . . . . . . 8 β’ (LIdealββ€ring) = (LIdealββ€ring) | |
11 | 10 | crng2idl 21029 | . . . . . . 7 β’ (β€ring β CRing β (LIdealββ€ring) = (2Idealββ€ring)) |
12 | 9, 11 | ax-mp 5 | . . . . . 6 β’ (LIdealββ€ring) = (2Idealββ€ring) |
13 | zringbas 21226 | . . . . . 6 β’ β€ = (Baseββ€ring) | |
14 | eceq2 8747 | . . . . . . . 8 β’ ( βΌ = (β€ring ~QG (πβ{π})) β [π₯] βΌ = [π₯](β€ring ~QG (πβ{π}))) | |
15 | 7, 14 | ax-mp 5 | . . . . . . 7 β’ [π₯] βΌ = [π₯](β€ring ~QG (πβ{π})) |
16 | 15 | mpteq2i 5254 | . . . . . 6 β’ (π₯ β β€ β¦ [π₯] βΌ ) = (π₯ β β€ β¦ [π₯](β€ring ~QG (πβ{π}))) |
17 | 8, 12, 13, 16 | qusrhm 21026 | . . . . 5 β’ ((β€ring β Ring β§ (πβ{π}) β (LIdealββ€ring)) β (π₯ β β€ β¦ [π₯] βΌ ) β (β€ring RingHom (β€ring /s βΌ ))) |
18 | 2, 6, 17 | sylancr 585 | . . . 4 β’ (π β β0 β (π₯ β β€ β¦ [π₯] βΌ ) β (β€ring RingHom (β€ring /s βΌ ))) |
19 | 4, 8 | zncrng2 21307 | . . . . 5 β’ (π β β€ β (β€ring /s βΌ ) β CRing) |
20 | crngring 20141 | . . . . 5 β’ ((β€ring /s βΌ ) β CRing β (β€ring /s βΌ ) β Ring) | |
21 | eqid 2730 | . . . . . 6 β’ (β€RHomβ(β€ring /s βΌ )) = (β€RHomβ(β€ring /s βΌ )) | |
22 | 21 | zrhrhmb 21281 | . . . . 5 β’ ((β€ring /s βΌ ) β Ring β ((π₯ β β€ β¦ [π₯] βΌ ) β (β€ring RingHom (β€ring /s βΌ )) β (π₯ β β€ β¦ [π₯] βΌ ) = (β€RHomβ(β€ring /s βΌ )))) |
23 | 3, 19, 20, 22 | 4syl 19 | . . . 4 β’ (π β β0 β ((π₯ β β€ β¦ [π₯] βΌ ) β (β€ring RingHom (β€ring /s βΌ )) β (π₯ β β€ β¦ [π₯] βΌ ) = (β€RHomβ(β€ring /s βΌ )))) |
24 | 18, 23 | mpbid 231 | . . 3 β’ (π β β0 β (π₯ β β€ β¦ [π₯] βΌ ) = (β€RHomβ(β€ring /s βΌ ))) |
25 | znzrh2.y | . . . 4 β’ π = (β€/nβ€βπ) | |
26 | 4, 8, 25 | znzrh 21319 | . . 3 β’ (π β β0 β (β€RHomβ(β€ring /s βΌ )) = (β€RHomβπ)) |
27 | 24, 26 | eqtr2d 2771 | . 2 β’ (π β β0 β (β€RHomβπ) = (π₯ β β€ β¦ [π₯] βΌ )) |
28 | 1, 27 | eqtrid 2782 | 1 β’ (π β β0 β πΏ = (π₯ β β€ β¦ [π₯] βΌ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1539 β wcel 2104 {csn 4629 β¦ cmpt 5232 βcfv 6544 (class class class)co 7413 [cec 8705 β0cn0 12478 β€cz 12564 /s cqus 17457 ~QG cqg 19040 Ringcrg 20129 CRingccrg 20130 RingHom crh 20362 LIdealclidl 20930 RSpancrsp 20931 2Idealc2idl 21007 β€ringczring 21219 β€RHomczrh 21270 β€/nβ€czn 21273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-ec 8709 df-qs 8713 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-fz 13491 df-seq 13973 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-imas 17460 df-qus 17461 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18707 df-grp 18860 df-minusg 18861 df-sbg 18862 df-mulg 18989 df-subg 19041 df-nsg 19042 df-eqg 19043 df-ghm 19130 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-cring 20132 df-oppr 20227 df-rhm 20365 df-subrng 20436 df-subrg 20461 df-lmod 20618 df-lss 20689 df-lsp 20729 df-sra 20932 df-rgmod 20933 df-lidl 20934 df-rsp 20935 df-2idl 21008 df-cnfld 21147 df-zring 21220 df-zrh 21274 df-zn 21277 |
This theorem is referenced by: znzrhval 21323 znzrhfo 21324 |
Copyright terms: Public domain | W3C validator |