Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znzrh2 | Structured version Visualization version GIF version |
Description: The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znzrh2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znzrh2.r | ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) |
znzrh2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znzrh2.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
Ref | Expression |
---|---|
znzrh2 | ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znzrh2.2 | . 2 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
2 | zringring 20254 | . . . . 5 ⊢ ℤring ∈ Ring | |
3 | nn0z 12057 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
4 | znzrh2.s | . . . . . . 7 ⊢ 𝑆 = (RSpan‘ℤring) | |
5 | 4 | znlidl 20314 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) |
7 | znzrh2.r | . . . . . . 7 ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) | |
8 | 7 | oveq2i 7167 | . . . . . 6 ⊢ (ℤring /s ∼ ) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
9 | zringcrng 20253 | . . . . . . 7 ⊢ ℤring ∈ CRing | |
10 | eqid 2758 | . . . . . . . 8 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
11 | 10 | crng2idl 20093 | . . . . . . 7 ⊢ (ℤring ∈ CRing → (LIdeal‘ℤring) = (2Ideal‘ℤring)) |
12 | 9, 11 | ax-mp 5 | . . . . . 6 ⊢ (LIdeal‘ℤring) = (2Ideal‘ℤring) |
13 | zringbas 20257 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
14 | eceq2 8345 | . . . . . . . 8 ⊢ ( ∼ = (ℤring ~QG (𝑆‘{𝑁})) → [𝑥] ∼ = [𝑥](ℤring ~QG (𝑆‘{𝑁}))) | |
15 | 7, 14 | ax-mp 5 | . . . . . . 7 ⊢ [𝑥] ∼ = [𝑥](ℤring ~QG (𝑆‘{𝑁})) |
16 | 15 | mpteq2i 5128 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG (𝑆‘{𝑁}))) |
17 | 8, 12, 13, 16 | qusrhm 20091 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) → (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ ))) |
18 | 2, 6, 17 | sylancr 590 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ ))) |
19 | 4, 8 | zncrng2 20315 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (ℤring /s ∼ ) ∈ CRing) |
20 | crngring 19390 | . . . . 5 ⊢ ((ℤring /s ∼ ) ∈ CRing → (ℤring /s ∼ ) ∈ Ring) | |
21 | eqid 2758 | . . . . . 6 ⊢ (ℤRHom‘(ℤring /s ∼ )) = (ℤRHom‘(ℤring /s ∼ )) | |
22 | 21 | zrhrhmb 20293 | . . . . 5 ⊢ ((ℤring /s ∼ ) ∈ Ring → ((𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (ℤRHom‘(ℤring /s ∼ )))) |
23 | 3, 19, 20, 22 | 4syl 19 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (ℤRHom‘(ℤring /s ∼ )))) |
24 | 18, 23 | mpbid 235 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (ℤRHom‘(ℤring /s ∼ ))) |
25 | znzrh2.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
26 | 4, 8, 25 | znzrh 20323 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s ∼ )) = (ℤRHom‘𝑌)) |
27 | 24, 26 | eqtr2d 2794 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
28 | 1, 27 | syl5eq 2805 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 {csn 4525 ↦ cmpt 5116 ‘cfv 6340 (class class class)co 7156 [cec 8303 ℕ0cn0 11947 ℤcz 12033 /s cqus 16849 ~QG cqg 18355 Ringcrg 19378 CRingccrg 19379 RingHom crh 19548 LIdealclidl 20023 RSpancrsp 20024 2Idealc2idl 20085 ℤringzring 20251 ℤRHomczrh 20282 ℤ/nℤczn 20285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-tpos 7908 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-ec 8307 df-qs 8311 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-seq 13432 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-starv 16651 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ds 16658 df-unif 16659 df-0g 16786 df-imas 16852 df-qus 16853 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-mhm 18035 df-grp 18185 df-minusg 18186 df-sbg 18187 df-mulg 18305 df-subg 18356 df-nsg 18357 df-eqg 18358 df-ghm 18436 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-ring 19380 df-cring 19381 df-oppr 19457 df-rnghom 19551 df-subrg 19614 df-lmod 19717 df-lss 19785 df-lsp 19825 df-sra 20025 df-rgmod 20026 df-lidl 20027 df-rsp 20028 df-2idl 20086 df-cnfld 20180 df-zring 20252 df-zrh 20286 df-zn 20289 |
This theorem is referenced by: znzrhval 20327 znzrhfo 20328 |
Copyright terms: Public domain | W3C validator |