| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znzrh2 | Structured version Visualization version GIF version | ||
| Description: The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znzrh2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znzrh2.r | ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) |
| znzrh2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znzrh2.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| Ref | Expression |
|---|---|
| znzrh2 | ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.2 | . 2 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 2 | zringring 21460 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 3 | nn0z 12638 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 4 | znzrh2.s | . . . . . . 7 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 5 | 4 | znlidl 21548 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) |
| 7 | znzrh2.r | . . . . . . 7 ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) | |
| 8 | 7 | oveq2i 7442 | . . . . . 6 ⊢ (ℤring /s ∼ ) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
| 9 | zringcrng 21459 | . . . . . . 7 ⊢ ℤring ∈ CRing | |
| 10 | eqid 2737 | . . . . . . . 8 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
| 11 | 10 | crng2idl 21291 | . . . . . . 7 ⊢ (ℤring ∈ CRing → (LIdeal‘ℤring) = (2Ideal‘ℤring)) |
| 12 | 9, 11 | ax-mp 5 | . . . . . 6 ⊢ (LIdeal‘ℤring) = (2Ideal‘ℤring) |
| 13 | zringbas 21464 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 14 | eceq2 8786 | . . . . . . . 8 ⊢ ( ∼ = (ℤring ~QG (𝑆‘{𝑁})) → [𝑥] ∼ = [𝑥](ℤring ~QG (𝑆‘{𝑁}))) | |
| 15 | 7, 14 | ax-mp 5 | . . . . . . 7 ⊢ [𝑥] ∼ = [𝑥](ℤring ~QG (𝑆‘{𝑁})) |
| 16 | 15 | mpteq2i 5247 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG (𝑆‘{𝑁}))) |
| 17 | 8, 12, 13, 16 | qusrhm 21286 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) → (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ ))) |
| 18 | 2, 6, 17 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ ))) |
| 19 | 4, 8 | zncrng2 21549 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (ℤring /s ∼ ) ∈ CRing) |
| 20 | crngring 20242 | . . . . 5 ⊢ ((ℤring /s ∼ ) ∈ CRing → (ℤring /s ∼ ) ∈ Ring) | |
| 21 | eqid 2737 | . . . . . 6 ⊢ (ℤRHom‘(ℤring /s ∼ )) = (ℤRHom‘(ℤring /s ∼ )) | |
| 22 | 21 | zrhrhmb 21521 | . . . . 5 ⊢ ((ℤring /s ∼ ) ∈ Ring → ((𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (ℤRHom‘(ℤring /s ∼ )))) |
| 23 | 3, 19, 20, 22 | 4syl 19 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥] ∼ ) ∈ (ℤring RingHom (ℤring /s ∼ )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (ℤRHom‘(ℤring /s ∼ )))) |
| 24 | 18, 23 | mpbid 232 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (ℤRHom‘(ℤring /s ∼ ))) |
| 25 | znzrh2.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 26 | 4, 8, 25 | znzrh 21561 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s ∼ )) = (ℤRHom‘𝑌)) |
| 27 | 24, 26 | eqtr2d 2778 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
| 28 | 1, 27 | eqtrid 2789 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {csn 4626 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 [cec 8743 ℕ0cn0 12526 ℤcz 12613 /s cqus 17550 ~QG cqg 19140 Ringcrg 20230 CRingccrg 20231 RingHom crh 20469 LIdealclidl 21216 RSpancrsp 21217 2Idealc2idl 21259 ℤringczring 21457 ℤRHomczrh 21510 ℤ/nℤczn 21513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-seq 14043 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-imas 17553 df-qus 17554 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-nsg 19142 df-eqg 19143 df-ghm 19231 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-2idl 21260 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-zn 21517 |
| This theorem is referenced by: znzrhval 21565 znzrhfo 21566 aks6d1c6lem5 42178 |
| Copyright terms: Public domain | W3C validator |