MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq2d Structured version   Visualization version   GIF version

Theorem eceq2d 8717
Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.)
Hypothesis
Ref Expression
eceq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eceq2d (𝜑 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2d
StepHypRef Expression
1 eceq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 eceq2 8715 . 2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
31, 2syl 17 1 (𝜑 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  [cec 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676
This theorem is referenced by:  vrgpfval  19703  quslsm  33383  opprqusplusg  33467  opprqusmulr  33469  qsdrngi  33473  releldmqscoss  38659  aks6d1c6lem5  42172  aks5lem3a  42184  prjspeclsp  42607
  Copyright terms: Public domain W3C validator