MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq2d Structured version   Visualization version   GIF version

Theorem eceq2d 8660
Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.)
Hypothesis
Ref Expression
eceq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eceq2d (𝜑 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2d
StepHypRef Expression
1 eceq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 eceq2 8658 . 2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
31, 2syl 17 1 (𝜑 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  [cec 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ec 8619
This theorem is referenced by:  vrgpfval  19673  quslsm  33362  opprqusplusg  33446  opprqusmulr  33448  qsdrngi  33452  releldmqscoss  38698  aks6d1c6lem5  42210  aks5lem3a  42222  prjspeclsp  42645
  Copyright terms: Public domain W3C validator