| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
| Ref | Expression |
|---|---|
| eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eceq1 8758 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 [cec 8717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 |
| This theorem is referenced by: brecop 8824 eroveu 8826 erov 8828 ecovcom 8837 ecovass 8838 ecovdi 8839 addsrmo 11087 mulsrmo 11088 addsrpr 11089 mulsrpr 11090 supsrlem 11125 supsr 11126 qus0 19172 qusinv 19173 qussub 19174 sylow2blem2 19602 frgpadd 19744 vrgpval 19748 vrgpinv 19750 frgpup3lem 19758 qusabl 19846 quscrng 21244 pzriprnglem11 21452 pzriprnglem12 21453 qustgplem 24059 pi1addval 24999 pi1xfrf 25004 pi1xfrval 25005 pi1xfrcnvlem 25007 pi1xfrcnv 25008 pi1cof 25010 pi1coval 25011 pi1coghm 25012 vitalilem3 25563 elrlocbasi 33261 rlocaddval 33263 rlocmulval 33264 rloccring 33265 rloc0g 33266 rloc1r 33267 rlocf1 33268 idomsubr 33303 opprqusmulr 33506 zringfrac 33569 ismntoplly 34056 linedegen 36161 fvline 36162 aks5lem3a 42202 aks5lem5a 42204 aks5lem6 42205 |
| Copyright terms: Public domain | W3C validator |