MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq1d Structured version   Visualization version   GIF version

Theorem eceq1d 8803
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
Hypothesis
Ref Expression
eceq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eceq1d (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1d
StepHypRef Expression
1 eceq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 eceq1 8802 . 2 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
31, 2syl 17 1 (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  [cec 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765
This theorem is referenced by:  brecop  8868  eroveu  8870  erov  8872  ecovcom  8881  ecovass  8882  ecovdi  8883  addsrmo  11142  mulsrmo  11143  addsrpr  11144  mulsrpr  11145  supsrlem  11180  supsr  11181  qus0  19229  qusinv  19230  qussub  19231  sylow2blem2  19663  frgpadd  19805  vrgpval  19809  vrgpinv  19811  frgpup3lem  19819  qusabl  19907  quscrng  21316  pzriprnglem11  21525  pzriprnglem12  21526  qustgplem  24150  pi1addval  25100  pi1xfrf  25105  pi1xfrval  25106  pi1xfrcnvlem  25108  pi1xfrcnv  25109  pi1cof  25111  pi1coval  25112  pi1coghm  25113  vitalilem3  25664  elrlocbasi  33238  rlocaddval  33240  rlocmulval  33241  rloccring  33242  rloc0g  33243  rloc1r  33244  rlocf1  33245  idomsubr  33276  opprqusmulr  33484  zringfrac  33547  ismntoplly  33971  linedegen  36107  fvline  36108  aks5lem3a  42146  aks5lem5a  42148  aks5lem6  42149
  Copyright terms: Public domain W3C validator