Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
Ref | Expression |
---|---|
eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eceq1 8519 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 [cec 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ec 8483 |
This theorem is referenced by: brecop 8582 eroveu 8584 erov 8586 ecovcom 8595 ecovass 8596 ecovdi 8597 addsrmo 10830 mulsrmo 10831 addsrpr 10832 mulsrpr 10833 supsrlem 10868 supsr 10869 qus0 18812 qusinv 18813 qussub 18814 sylow2blem2 19224 frgpadd 19367 vrgpval 19371 vrgpinv 19373 frgpup3lem 19381 qusabl 19464 quscrng 20509 qustgplem 23270 pi1addval 24209 pi1xfrf 24214 pi1xfrval 24215 pi1xfrcnvlem 24217 pi1xfrcnv 24218 pi1cof 24220 pi1coval 24221 pi1coghm 24222 vitalilem3 24772 ismntoplly 31971 linedegen 34441 fvline 34442 |
Copyright terms: Public domain | W3C validator |