| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
| Ref | Expression |
|---|---|
| eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eceq1 8667 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 [cec 8626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 |
| This theorem is referenced by: brecop 8740 eroveu 8742 erov 8744 ecovcom 8753 ecovass 8754 ecovdi 8755 addsrmo 10971 mulsrmo 10972 addsrpr 10973 mulsrpr 10974 supsrlem 11009 supsr 11010 qus0 19103 qusinv 19104 qussub 19105 sylow2blem2 19535 frgpadd 19677 vrgpval 19681 vrgpinv 19683 frgpup3lem 19691 qusabl 19779 quscrng 21222 pzriprnglem11 21430 pzriprnglem12 21431 qustgplem 24037 pi1addval 24976 pi1xfrf 24981 pi1xfrval 24982 pi1xfrcnvlem 24984 pi1xfrcnv 24985 pi1cof 24987 pi1coval 24988 pi1coghm 24989 vitalilem3 25539 elrlocbasi 33240 rlocaddval 33242 rlocmulval 33243 rloccring 33244 rloc0g 33245 rloc1r 33246 rlocf1 33247 idomsubr 33282 opprqusmulr 33463 zringfrac 33526 ismntoplly 34059 linedegen 36208 fvline 36209 aks5lem3a 42302 aks5lem5a 42304 aks5lem6 42305 |
| Copyright terms: Public domain | W3C validator |