MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq1d Structured version   Visualization version   GIF version

Theorem eceq1d 8662
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
Hypothesis
Ref Expression
eceq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eceq1d (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1d
StepHypRef Expression
1 eceq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 eceq1 8661 . 2 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
31, 2syl 17 1 (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624
This theorem is referenced by:  brecop  8734  eroveu  8736  erov  8738  ecovcom  8747  ecovass  8748  ecovdi  8749  addsrmo  10961  mulsrmo  10962  addsrpr  10963  mulsrpr  10964  supsrlem  10999  supsr  11000  qus0  19099  qusinv  19100  qussub  19101  sylow2blem2  19531  frgpadd  19673  vrgpval  19677  vrgpinv  19679  frgpup3lem  19687  qusabl  19775  quscrng  21218  pzriprnglem11  21426  pzriprnglem12  21427  qustgplem  24034  pi1addval  24973  pi1xfrf  24978  pi1xfrval  24979  pi1xfrcnvlem  24981  pi1xfrcnv  24982  pi1cof  24984  pi1coval  24985  pi1coghm  24986  vitalilem3  25536  elrlocbasi  33228  rlocaddval  33230  rlocmulval  33231  rloccring  33232  rloc0g  33233  rloc1r  33234  rlocf1  33235  idomsubr  33270  opprqusmulr  33451  zringfrac  33514  ismntoplly  34033  linedegen  36176  fvline  36177  aks5lem3a  42221  aks5lem5a  42223  aks5lem6  42224
  Copyright terms: Public domain W3C validator