| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
| Ref | Expression |
|---|---|
| eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eceq1 8713 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 [cec 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 |
| This theorem is referenced by: brecop 8786 eroveu 8788 erov 8790 ecovcom 8799 ecovass 8800 ecovdi 8801 addsrmo 11033 mulsrmo 11034 addsrpr 11035 mulsrpr 11036 supsrlem 11071 supsr 11072 qus0 19128 qusinv 19129 qussub 19130 sylow2blem2 19558 frgpadd 19700 vrgpval 19704 vrgpinv 19706 frgpup3lem 19714 qusabl 19802 quscrng 21200 pzriprnglem11 21408 pzriprnglem12 21409 qustgplem 24015 pi1addval 24955 pi1xfrf 24960 pi1xfrval 24961 pi1xfrcnvlem 24963 pi1xfrcnv 24964 pi1cof 24966 pi1coval 24967 pi1coghm 24968 vitalilem3 25518 elrlocbasi 33224 rlocaddval 33226 rlocmulval 33227 rloccring 33228 rloc0g 33229 rloc1r 33230 rlocf1 33231 idomsubr 33266 opprqusmulr 33469 zringfrac 33532 ismntoplly 34022 linedegen 36138 fvline 36139 aks5lem3a 42184 aks5lem5a 42186 aks5lem6 42187 |
| Copyright terms: Public domain | W3C validator |