Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
Ref | Expression |
---|---|
eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eceq1 8536 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: brecop 8599 eroveu 8601 erov 8603 ecovcom 8612 ecovass 8613 ecovdi 8614 addsrmo 10829 mulsrmo 10830 addsrpr 10831 mulsrpr 10832 supsrlem 10867 supsr 10868 qus0 18814 qusinv 18815 qussub 18816 sylow2blem2 19226 frgpadd 19369 vrgpval 19373 vrgpinv 19375 frgpup3lem 19383 qusabl 19466 quscrng 20511 qustgplem 23272 pi1addval 24211 pi1xfrf 24216 pi1xfrval 24217 pi1xfrcnvlem 24219 pi1xfrcnv 24220 pi1cof 24222 pi1coval 24223 pi1coghm 24224 vitalilem3 24774 ismntoplly 31975 linedegen 34445 fvline 34446 |
Copyright terms: Public domain | W3C validator |