| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
| Ref | Expression |
|---|---|
| eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eceq1 8710 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: brecop 8783 eroveu 8785 erov 8787 ecovcom 8796 ecovass 8797 ecovdi 8798 addsrmo 11026 mulsrmo 11027 addsrpr 11028 mulsrpr 11029 supsrlem 11064 supsr 11065 qus0 19121 qusinv 19122 qussub 19123 sylow2blem2 19551 frgpadd 19693 vrgpval 19697 vrgpinv 19699 frgpup3lem 19707 qusabl 19795 quscrng 21193 pzriprnglem11 21401 pzriprnglem12 21402 qustgplem 24008 pi1addval 24948 pi1xfrf 24953 pi1xfrval 24954 pi1xfrcnvlem 24956 pi1xfrcnv 24957 pi1cof 24959 pi1coval 24960 pi1coghm 24961 vitalilem3 25511 elrlocbasi 33217 rlocaddval 33219 rlocmulval 33220 rloccring 33221 rloc0g 33222 rloc1r 33223 rlocf1 33224 idomsubr 33259 opprqusmulr 33462 zringfrac 33525 ismntoplly 34015 linedegen 36131 fvline 36132 aks5lem3a 42177 aks5lem5a 42179 aks5lem6 42180 |
| Copyright terms: Public domain | W3C validator |