MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq1d Structured version   Visualization version   GIF version

Theorem eceq1d 8759
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
Hypothesis
Ref Expression
eceq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eceq1d (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1d
StepHypRef Expression
1 eceq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 eceq1 8758 . 2 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
31, 2syl 17 1 (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  [cec 8717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721
This theorem is referenced by:  brecop  8824  eroveu  8826  erov  8828  ecovcom  8837  ecovass  8838  ecovdi  8839  addsrmo  11087  mulsrmo  11088  addsrpr  11089  mulsrpr  11090  supsrlem  11125  supsr  11126  qus0  19172  qusinv  19173  qussub  19174  sylow2blem2  19602  frgpadd  19744  vrgpval  19748  vrgpinv  19750  frgpup3lem  19758  qusabl  19846  quscrng  21244  pzriprnglem11  21452  pzriprnglem12  21453  qustgplem  24059  pi1addval  24999  pi1xfrf  25004  pi1xfrval  25005  pi1xfrcnvlem  25007  pi1xfrcnv  25008  pi1cof  25010  pi1coval  25011  pi1coghm  25012  vitalilem3  25563  elrlocbasi  33261  rlocaddval  33263  rlocmulval  33264  rloccring  33265  rloc0g  33266  rloc1r  33267  rlocf1  33268  idomsubr  33303  opprqusmulr  33506  zringfrac  33569  ismntoplly  34056  linedegen  36161  fvline  36162  aks5lem3a  42202  aks5lem5a  42204  aks5lem6  42205
  Copyright terms: Public domain W3C validator