![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
Ref | Expression |
---|---|
eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eceq1 8802 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: brecop 8868 eroveu 8870 erov 8872 ecovcom 8881 ecovass 8882 ecovdi 8883 addsrmo 11142 mulsrmo 11143 addsrpr 11144 mulsrpr 11145 supsrlem 11180 supsr 11181 qus0 19229 qusinv 19230 qussub 19231 sylow2blem2 19663 frgpadd 19805 vrgpval 19809 vrgpinv 19811 frgpup3lem 19819 qusabl 19907 quscrng 21316 pzriprnglem11 21525 pzriprnglem12 21526 qustgplem 24150 pi1addval 25100 pi1xfrf 25105 pi1xfrval 25106 pi1xfrcnvlem 25108 pi1xfrcnv 25109 pi1cof 25111 pi1coval 25112 pi1coghm 25113 vitalilem3 25664 elrlocbasi 33238 rlocaddval 33240 rlocmulval 33241 rloccring 33242 rloc0g 33243 rloc1r 33244 rlocf1 33245 idomsubr 33276 opprqusmulr 33484 zringfrac 33547 ismntoplly 33971 linedegen 36107 fvline 36108 aks5lem3a 42146 aks5lem5a 42148 aks5lem6 42149 |
Copyright terms: Public domain | W3C validator |