Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
Ref | Expression |
---|---|
eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eceq1 8494 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: brecop 8557 eroveu 8559 erov 8561 ecovcom 8570 ecovass 8571 ecovdi 8572 addsrmo 10760 mulsrmo 10761 addsrpr 10762 mulsrpr 10763 supsrlem 10798 supsr 10799 qus0 18729 qusinv 18730 qussub 18731 sylow2blem2 19141 frgpadd 19284 vrgpval 19288 vrgpinv 19290 frgpup3lem 19298 qusabl 19381 quscrng 20424 qustgplem 23180 pi1addval 24117 pi1xfrf 24122 pi1xfrval 24123 pi1xfrcnvlem 24125 pi1xfrcnv 24126 pi1cof 24128 pi1coval 24129 pi1coghm 24130 vitalilem3 24679 ismntoplly 31875 linedegen 34372 fvline 34373 |
Copyright terms: Public domain | W3C validator |