| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
| Ref | Expression |
|---|---|
| eceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eceq1d | ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eceq1 8661 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 |
| This theorem is referenced by: brecop 8734 eroveu 8736 erov 8738 ecovcom 8747 ecovass 8748 ecovdi 8749 addsrmo 10961 mulsrmo 10962 addsrpr 10963 mulsrpr 10964 supsrlem 10999 supsr 11000 qus0 19099 qusinv 19100 qussub 19101 sylow2blem2 19531 frgpadd 19673 vrgpval 19677 vrgpinv 19679 frgpup3lem 19687 qusabl 19775 quscrng 21218 pzriprnglem11 21426 pzriprnglem12 21427 qustgplem 24034 pi1addval 24973 pi1xfrf 24978 pi1xfrval 24979 pi1xfrcnvlem 24981 pi1xfrcnv 24982 pi1cof 24984 pi1coval 24985 pi1coghm 24986 vitalilem3 25536 elrlocbasi 33228 rlocaddval 33230 rlocmulval 33231 rloccring 33232 rloc0g 33233 rloc1r 33234 rlocf1 33235 idomsubr 33270 opprqusmulr 33451 zringfrac 33514 ismntoplly 34033 linedegen 36176 fvline 36177 aks5lem3a 42221 aks5lem5a 42223 aks5lem6 42224 |
| Copyright terms: Public domain | W3C validator |