MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq1d Structured version   Visualization version   GIF version

Theorem eceq1d 8495
Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
Hypothesis
Ref Expression
eceq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eceq1d (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1d
StepHypRef Expression
1 eceq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 eceq1 8494 . 2 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
31, 2syl 17 1 (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  brecop  8557  eroveu  8559  erov  8561  ecovcom  8570  ecovass  8571  ecovdi  8572  addsrmo  10760  mulsrmo  10761  addsrpr  10762  mulsrpr  10763  supsrlem  10798  supsr  10799  qus0  18729  qusinv  18730  qussub  18731  sylow2blem2  19141  frgpadd  19284  vrgpval  19288  vrgpinv  19290  frgpup3lem  19298  qusabl  19381  quscrng  20424  qustgplem  23180  pi1addval  24117  pi1xfrf  24122  pi1xfrval  24123  pi1xfrcnvlem  24125  pi1xfrcnv  24126  pi1cof  24128  pi1coval  24129  pi1coghm  24130  vitalilem3  24679  ismntoplly  31875  linedegen  34372  fvline  34373
  Copyright terms: Public domain W3C validator