MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq2i Structured version   Visualization version   GIF version

Theorem eceq2i 8611
Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
Hypothesis
Ref Expression
eceq2i.1 𝐴 = 𝐵
Assertion
Ref Expression
eceq2i [𝐶]𝐴 = [𝐶]𝐵

Proof of Theorem eceq2i
StepHypRef Expression
1 eceq2i.1 . 2 𝐴 = 𝐵
2 eceq2 8610 . 2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
31, 2ax-mp 5 1 [𝐶]𝐴 = [𝐶]𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  [cec 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-br 5094  df-opab 5156  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8572
This theorem is referenced by:  eccnvepres3  36602  extid  36627  br2coss  36756  eldisjlem19  37128  prjspeclsp  40762
  Copyright terms: Public domain W3C validator