| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.) |
| Ref | Expression |
|---|---|
| eceq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eceq2i | ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eceq2 8712 | . 2 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: ecqusaddd 19124 rngqiprnglinlem2 21202 rngqiprngimf1lem 21204 rngqiprngimf1 21210 eccnvepres3 38274 extid 38298 br2coss 38429 eldisjlem19 38802 prjspeclsp 42600 |
| Copyright terms: Public domain | W3C validator |