MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq2i Structured version   Visualization version   GIF version

Theorem eceq2i 8716
Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
Hypothesis
Ref Expression
eceq2i.1 𝐴 = 𝐵
Assertion
Ref Expression
eceq2i [𝐶]𝐴 = [𝐶]𝐵

Proof of Theorem eceq2i
StepHypRef Expression
1 eceq2i.1 . 2 𝐴 = 𝐵
2 eceq2 8715 . 2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
31, 2ax-mp 5 1 [𝐶]𝐴 = [𝐶]𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  [cec 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676
This theorem is referenced by:  ecqusaddd  19131  rngqiprnglinlem2  21209  rngqiprngimf1lem  21211  rngqiprngimf1  21217  eccnvepres3  38281  extid  38305  br2coss  38436  eldisjlem19  38809  prjspeclsp  42607
  Copyright terms: Public domain W3C validator