Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq2i | Structured version Visualization version GIF version |
Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.) |
Ref | Expression |
---|---|
eceq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eceq2i | ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eceq2 8610 | . 2 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 [cec 8568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8572 |
This theorem is referenced by: eccnvepres3 36602 extid 36627 br2coss 36756 eldisjlem19 37128 prjspeclsp 40762 |
Copyright terms: Public domain | W3C validator |