| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.) |
| Ref | Expression |
|---|---|
| eceq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eceq2i | ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eceq2 8658 | . 2 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 [cec 8615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ec 8619 |
| This theorem is referenced by: ecqusaddd 19099 rngqiprnglinlem2 21224 rngqiprngimf1lem 21226 rngqiprngimf1 21232 eccnvepres3 38320 extid 38344 br2coss 38475 eldisjlem19 38848 prjspeclsp 42645 |
| Copyright terms: Public domain | W3C validator |