MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgrelexlemb Structured version   Visualization version   GIF version

Theorem efgrelexlemb 19670
Description: If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgrelexlem.1 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
Assertion
Ref Expression
efgrelexlemb 𝐿
Distinct variable groups:   𝑐,𝑑,𝑖,𝑗   𝑦,𝑧   𝑛,𝑐,𝑡,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑀,𝑐   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑗   𝑘,𝑐,𝑇,𝑖,𝑗,𝑚,𝑡,𝑥   𝑊,𝑐   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊,𝑖,𝑗   ,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑐,𝑑,𝑖,𝑗   𝐼,𝑐,𝑖,𝑗,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑖,𝑗,𝑘,𝑚,𝑛,𝑐,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgrelexlemb
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . 3 = ( ~FG𝐼)
3 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgval2 19644 . 2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
6 efgrelexlem.1 . . . . . . . 8 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
76relopabiv 5766 . . . . . . 7 Rel 𝐿
87a1i 11 . . . . . 6 (⊤ → Rel 𝐿)
9 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑓𝐿𝑔)
10 eqcom 2740 . . . . . . . . . 10 ((𝑎‘0) = (𝑏‘0) ↔ (𝑏‘0) = (𝑎‘0))
11102rexbii 3109 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0))
12 rexcom 3262 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1311, 12bitri 275 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
14 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
15 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
161, 2, 3, 4, 14, 15, 6efgrelexlema 19669 . . . . . . . 8 (𝑓𝐿𝑔 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0))
171, 2, 3, 4, 14, 15, 6efgrelexlema 19669 . . . . . . . 8 (𝑔𝐿𝑓 ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1813, 16, 173bitr4i 303 . . . . . . 7 (𝑓𝐿𝑔𝑔𝐿𝑓)
199, 18sylib 218 . . . . . 6 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑔𝐿𝑓)
201, 2, 3, 4, 14, 15, 6efgrelexlema 19669 . . . . . . . . 9 (𝑔𝐿 ↔ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0))
21 reeanv 3205 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) ↔ (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)))
221, 2, 3, 4, 14, 15efgsfo 19659 . . . . . . . . . . . . . . . . . . . 20 𝑆:dom 𝑆onto𝑊
23 fofn 6745 . . . . . . . . . . . . . . . . . . . 20 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑆 Fn dom 𝑆
25 fniniseg 7002 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔)))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔))
27 fniniseg 7002 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)))
2824, 27ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔))
29 eqtr3 2755 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔) → (𝑆𝑟) = (𝑆𝑏))
301, 2, 3, 4, 14, 15efgred 19668 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑟‘0) = (𝑏‘0))
3130eqcomd 2739 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
32313expa 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
3329, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ ((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3433an4s 660 . . . . . . . . . . . . . . . . . 18 (((𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔) ∧ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3526, 28, 34syl2anb 598 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (𝑏‘0) = (𝑟‘0))
36 eqeq2 2745 . . . . . . . . . . . . . . . . 17 ((𝑟‘0) = (𝑠‘0) → ((𝑏‘0) = (𝑟‘0) ↔ (𝑏‘0) = (𝑠‘0)))
3735, 36syl5ibcom 245 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑟‘0) = (𝑠‘0) → (𝑏‘0) = (𝑠‘0)))
3837reximdv 3148 . . . . . . . . . . . . . . 15 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
39 eqeq1 2737 . . . . . . . . . . . . . . . . 17 ((𝑎‘0) = (𝑏‘0) → ((𝑎‘0) = (𝑠‘0) ↔ (𝑏‘0) = (𝑠‘0)))
4039rexbidv 3157 . . . . . . . . . . . . . . . 16 ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0) ↔ ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
4140imbi2d 340 . . . . . . . . . . . . . . 15 ((𝑎‘0) = (𝑏‘0) → ((∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)) ↔ (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0))))
4238, 41syl5ibrcom 247 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4342rexlimdva 3134 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑆 “ {𝑔}) → (∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4443impd 410 . . . . . . . . . . . 12 (𝑟 ∈ (𝑆 “ {𝑔}) → ((∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)))
4544rexlimiv 3127 . . . . . . . . . . 11 (∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4645reximi 3071 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4721, 46sylbir 235 . . . . . . . . 9 ((∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4816, 20, 47syl2anb 598 . . . . . . . 8 ((𝑓𝐿𝑔𝑔𝐿) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
491, 2, 3, 4, 14, 15, 6efgrelexlema 19669 . . . . . . . 8 (𝑓𝐿 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
5048, 49sylibr 234 . . . . . . 7 ((𝑓𝐿𝑔𝑔𝐿) → 𝑓𝐿)
5150adantl 481 . . . . . 6 ((⊤ ∧ (𝑓𝐿𝑔𝑔𝐿)) → 𝑓𝐿)
52 eqid 2733 . . . . . . . . . . . 12 (𝑎‘0) = (𝑎‘0)
53 fveq1 6830 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (𝑏‘0) = (𝑎‘0))
5453rspceeqv 3596 . . . . . . . . . . . 12 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ (𝑎‘0) = (𝑎‘0)) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5552, 54mpan2 691 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑓}) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5655pm4.71i 559 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)))
57 fniniseg 7002 . . . . . . . . . . 11 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓)))
5824, 57ax-mp 5 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
5956, 58bitr3i 277 . . . . . . . . 9 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
6059rexbii2 3076 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
611, 2, 3, 4, 14, 15, 6efgrelexlema 19669 . . . . . . . 8 (𝑓𝐿𝑓 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
62 forn 6746 . . . . . . . . . . 11 (𝑆:dom 𝑆onto𝑊 → ran 𝑆 = 𝑊)
6322, 62ax-mp 5 . . . . . . . . . 10 ran 𝑆 = 𝑊
6463eleq2i 2825 . . . . . . . . 9 (𝑓 ∈ ran 𝑆𝑓𝑊)
65 fvelrnb 6891 . . . . . . . . . 10 (𝑆 Fn dom 𝑆 → (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓))
6624, 65ax-mp 5 . . . . . . . . 9 (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6764, 66bitr3i 277 . . . . . . . 8 (𝑓𝑊 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6860, 61, 673bitr4ri 304 . . . . . . 7 (𝑓𝑊𝑓𝐿𝑓)
6968a1i 11 . . . . . 6 (⊤ → (𝑓𝑊𝑓𝐿𝑓))
708, 19, 51, 69iserd 8657 . . . . 5 (⊤ → 𝐿 Er 𝑊)
7170mptru 1548 . . . 4 𝐿 Er 𝑊
72 simpl 482 . . . . . . . . . . 11 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝑊)
73 foelrn 7049 . . . . . . . . . . 11 ((𝑆:dom 𝑆onto𝑊𝑎𝑊) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
7422, 72, 73sylancr 587 . . . . . . . . . 10 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
75 simprl 770 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ dom 𝑆)
76 simprr 772 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑎 = (𝑆𝑟))
7776eqcomd 2739 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆𝑟) = 𝑎)
78 fniniseg 7002 . . . . . . . . . . . 12 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎)))
7924, 78ax-mp 5 . . . . . . . . . . 11 (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎))
8075, 77, 79sylanbrc 583 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (𝑆 “ {𝑎}))
81 simplr 768 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇𝑎))
8276fveq2d 6835 . . . . . . . . . . . . . . 15 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑇𝑎) = (𝑇‘(𝑆𝑟)))
8382rneqd 5884 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ran (𝑇𝑎) = ran (𝑇‘(𝑆𝑟)))
8481, 83eleqtrd 2835 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇‘(𝑆𝑟)))
851, 2, 3, 4, 14, 15efgsp1 19657 . . . . . . . . . . . . 13 ((𝑟 ∈ dom 𝑆𝑏 ∈ ran (𝑇‘(𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
8675, 84, 85syl2anc 584 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
871, 2, 3, 4, 14, 15efgsdm 19650 . . . . . . . . . . . . . . . 16 (𝑟 ∈ dom 𝑆 ↔ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑟‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑟))(𝑟𝑖) ∈ ran (𝑇‘(𝑟‘(𝑖 − 1)))))
8887simp1bi 1145 . . . . . . . . . . . . . . 15 (𝑟 ∈ dom 𝑆𝑟 ∈ (Word 𝑊 ∖ {∅}))
8988ad2antrl 728 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (Word 𝑊 ∖ {∅}))
9089eldifad 3910 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ Word 𝑊)
911, 2, 3, 4efgtf 19642 . . . . . . . . . . . . . . . . 17 (𝑎𝑊 → ((𝑇𝑎) = (𝑓 ∈ (0...(♯‘𝑎)), 𝑔 ∈ (𝐼 × 2o) ↦ (𝑎 splice ⟨𝑓, 𝑓, ⟨“𝑔(𝑀𝑔)”⟩⟩)) ∧ (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊))
9291simprd 495 . . . . . . . . . . . . . . . 16 (𝑎𝑊 → (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊)
9392frnd 6667 . . . . . . . . . . . . . . 15 (𝑎𝑊 → ran (𝑇𝑎) ⊆ 𝑊)
9493sselda 3930 . . . . . . . . . . . . . 14 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏𝑊)
9594adantr 480 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏𝑊)
961, 2, 3, 4, 14, 15efgsval2 19653 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊𝑏𝑊 ∧ (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
9790, 95, 86, 96syl3anc 1373 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
98 fniniseg 7002 . . . . . . . . . . . . 13 (𝑆 Fn dom 𝑆 → ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)))
9924, 98ax-mp 5 . . . . . . . . . . . 12 ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏))
10086, 97, 99sylanbrc 583 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}))
10195s1cld 14518 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ⟨“𝑏”⟩ ∈ Word 𝑊)
102 eldifsn 4739 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑟 ∈ Word 𝑊𝑟 ≠ ∅))
103 lennncl 14448 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ Word 𝑊𝑟 ≠ ∅) → (♯‘𝑟) ∈ ℕ)
104102, 103sylbi 217 . . . . . . . . . . . . . . 15 (𝑟 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝑟) ∈ ℕ)
10589, 104syl 17 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (♯‘𝑟) ∈ ℕ)
106 lbfzo0 13606 . . . . . . . . . . . . . 14 (0 ∈ (0..^(♯‘𝑟)) ↔ (♯‘𝑟) ∈ ℕ)
107105, 106sylibr 234 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 0 ∈ (0..^(♯‘𝑟)))
108 ccatval1 14491 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊 ∧ ⟨“𝑏”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
10990, 101, 107, 108syl3anc 1373 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
110109eqcomd 2739 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
111 fveq1 6830 . . . . . . . . . . . 12 (𝑠 = (𝑟 ++ ⟨“𝑏”⟩) → (𝑠‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
112111rspceeqv 3596 . . . . . . . . . . 11 (((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ∧ (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0)) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
113100, 110, 112syl2anc 584 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
11474, 80, 113reximssdv 3151 . . . . . . . . 9 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
1151, 2, 3, 4, 14, 15, 6efgrelexlema 19669 . . . . . . . . 9 (𝑎𝐿𝑏 ↔ ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
116114, 115sylibr 234 . . . . . . . 8 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝐿𝑏)
117 vex 3441 . . . . . . . . 9 𝑏 ∈ V
118 vex 3441 . . . . . . . . 9 𝑎 ∈ V
119117, 118elec 8677 . . . . . . . 8 (𝑏 ∈ [𝑎]𝐿𝑎𝐿𝑏)
120116, 119sylibr 234 . . . . . . 7 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏 ∈ [𝑎]𝐿)
121120ex 412 . . . . . 6 (𝑎𝑊 → (𝑏 ∈ ran (𝑇𝑎) → 𝑏 ∈ [𝑎]𝐿))
122121ssrdv 3936 . . . . 5 (𝑎𝑊 → ran (𝑇𝑎) ⊆ [𝑎]𝐿)
123122rgen 3050 . . . 4 𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿
1241fvexi 6845 . . . . . 6 𝑊 ∈ V
125 erex 8655 . . . . . 6 (𝐿 Er 𝑊 → (𝑊 ∈ V → 𝐿 ∈ V))
12671, 124, 125mp2 9 . . . . 5 𝐿 ∈ V
127 ereq1 8638 . . . . . 6 (𝑟 = 𝐿 → (𝑟 Er 𝑊𝐿 Er 𝑊))
128 eceq2 8672 . . . . . . . 8 (𝑟 = 𝐿 → [𝑎]𝑟 = [𝑎]𝐿)
129128sseq2d 3963 . . . . . . 7 (𝑟 = 𝐿 → (ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇𝑎) ⊆ [𝑎]𝐿))
130129ralbidv 3156 . . . . . 6 (𝑟 = 𝐿 → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
131127, 130anbi12d 632 . . . . 5 (𝑟 = 𝐿 → ((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿)))
132126, 131elab 3631 . . . 4 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
13371, 123, 132mpbir2an 711 . . 3 𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
134 intss1 4915 . . 3 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿)
135133, 134ax-mp 5 . 2 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿
1365, 135eqsstri 3977 1 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  wss 3898  c0 4282  {csn 4577  cop 4583  cotp 4585   cint 4899   ciun 4943   class class class wbr 5095  {copab 5157  cmpt 5176   I cid 5515   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  cima 5624  Rel wrel 5626   Fn wfn 6484  wf 6485  ontowfo 6487  cfv 6489  (class class class)co 7355  cmpo 7357  1oc1o 8387  2oc2o 8388   Er wer 8628  [cec 8629  0cc0 11017  1c1 11018  cmin 11355  cn 12136  ...cfz 13414  ..^cfzo 13561  chash 14244  Word cword 14427   ++ cconcat 14484  ⟨“cs1 14510   splice csplice 14663  ⟨“cs2 14755   ~FG cefg 19626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-ec 8633  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-splice 14664  df-s2 14762  df-efg 19629
This theorem is referenced by:  efgrelex  19671
  Copyright terms: Public domain W3C validator