MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgrelexlemb Structured version   Visualization version   GIF version

Theorem efgrelexlemb 19443
Description: If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgrelexlem.1 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
Assertion
Ref Expression
efgrelexlemb 𝐿
Distinct variable groups:   𝑐,𝑑,𝑖,𝑗   𝑦,𝑧   𝑛,𝑐,𝑡,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑀,𝑐   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑗   𝑘,𝑐,𝑇,𝑖,𝑗,𝑚,𝑡,𝑥   𝑊,𝑐   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊,𝑖,𝑗   ,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑐,𝑑,𝑖,𝑗   𝐼,𝑐,𝑖,𝑗,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑖,𝑗,𝑘,𝑚,𝑛,𝑐,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgrelexlemb
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . 3 = ( ~FG𝐼)
3 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgval2 19417 . 2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
6 efgrelexlem.1 . . . . . . . 8 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
76relopabiv 5756 . . . . . . 7 Rel 𝐿
87a1i 11 . . . . . 6 (⊤ → Rel 𝐿)
9 simpr 485 . . . . . . 7 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑓𝐿𝑔)
10 eqcom 2743 . . . . . . . . . 10 ((𝑎‘0) = (𝑏‘0) ↔ (𝑏‘0) = (𝑎‘0))
11102rexbii 3124 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0))
12 rexcom 3269 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1311, 12bitri 274 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
14 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
15 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
161, 2, 3, 4, 14, 15, 6efgrelexlema 19442 . . . . . . . 8 (𝑓𝐿𝑔 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0))
171, 2, 3, 4, 14, 15, 6efgrelexlema 19442 . . . . . . . 8 (𝑔𝐿𝑓 ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1813, 16, 173bitr4i 302 . . . . . . 7 (𝑓𝐿𝑔𝑔𝐿𝑓)
199, 18sylib 217 . . . . . 6 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑔𝐿𝑓)
201, 2, 3, 4, 14, 15, 6efgrelexlema 19442 . . . . . . . . 9 (𝑔𝐿 ↔ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0))
21 reeanv 3213 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) ↔ (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)))
221, 2, 3, 4, 14, 15efgsfo 19432 . . . . . . . . . . . . . . . . . . . 20 𝑆:dom 𝑆onto𝑊
23 fofn 6735 . . . . . . . . . . . . . . . . . . . 20 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑆 Fn dom 𝑆
25 fniniseg 6987 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔)))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔))
27 fniniseg 6987 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)))
2824, 27ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔))
29 eqtr3 2762 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔) → (𝑆𝑟) = (𝑆𝑏))
301, 2, 3, 4, 14, 15efgred 19441 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑟‘0) = (𝑏‘0))
3130eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
32313expa 1117 . . . . . . . . . . . . . . . . . . . 20 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
3329, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ ((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3433an4s 657 . . . . . . . . . . . . . . . . . 18 (((𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔) ∧ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3526, 28, 34syl2anb 598 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (𝑏‘0) = (𝑟‘0))
36 eqeq2 2748 . . . . . . . . . . . . . . . . 17 ((𝑟‘0) = (𝑠‘0) → ((𝑏‘0) = (𝑟‘0) ↔ (𝑏‘0) = (𝑠‘0)))
3735, 36syl5ibcom 244 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑟‘0) = (𝑠‘0) → (𝑏‘0) = (𝑠‘0)))
3837reximdv 3163 . . . . . . . . . . . . . . 15 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
39 eqeq1 2740 . . . . . . . . . . . . . . . . 17 ((𝑎‘0) = (𝑏‘0) → ((𝑎‘0) = (𝑠‘0) ↔ (𝑏‘0) = (𝑠‘0)))
4039rexbidv 3171 . . . . . . . . . . . . . . . 16 ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0) ↔ ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
4140imbi2d 340 . . . . . . . . . . . . . . 15 ((𝑎‘0) = (𝑏‘0) → ((∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)) ↔ (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0))))
4238, 41syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4342rexlimdva 3148 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑆 “ {𝑔}) → (∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4443impd 411 . . . . . . . . . . . 12 (𝑟 ∈ (𝑆 “ {𝑔}) → ((∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)))
4544rexlimiv 3141 . . . . . . . . . . 11 (∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4645reximi 3083 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4721, 46sylbir 234 . . . . . . . . 9 ((∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4816, 20, 47syl2anb 598 . . . . . . . 8 ((𝑓𝐿𝑔𝑔𝐿) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
491, 2, 3, 4, 14, 15, 6efgrelexlema 19442 . . . . . . . 8 (𝑓𝐿 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
5048, 49sylibr 233 . . . . . . 7 ((𝑓𝐿𝑔𝑔𝐿) → 𝑓𝐿)
5150adantl 482 . . . . . 6 ((⊤ ∧ (𝑓𝐿𝑔𝑔𝐿)) → 𝑓𝐿)
52 eqid 2736 . . . . . . . . . . . 12 (𝑎‘0) = (𝑎‘0)
53 fveq1 6818 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (𝑏‘0) = (𝑎‘0))
5453rspceeqv 3584 . . . . . . . . . . . 12 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ (𝑎‘0) = (𝑎‘0)) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5552, 54mpan2 688 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑓}) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5655pm4.71i 560 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)))
57 fniniseg 6987 . . . . . . . . . . 11 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓)))
5824, 57ax-mp 5 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
5956, 58bitr3i 276 . . . . . . . . 9 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
6059rexbii2 3089 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
611, 2, 3, 4, 14, 15, 6efgrelexlema 19442 . . . . . . . 8 (𝑓𝐿𝑓 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
62 forn 6736 . . . . . . . . . . 11 (𝑆:dom 𝑆onto𝑊 → ran 𝑆 = 𝑊)
6322, 62ax-mp 5 . . . . . . . . . 10 ran 𝑆 = 𝑊
6463eleq2i 2828 . . . . . . . . 9 (𝑓 ∈ ran 𝑆𝑓𝑊)
65 fvelrnb 6880 . . . . . . . . . 10 (𝑆 Fn dom 𝑆 → (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓))
6624, 65ax-mp 5 . . . . . . . . 9 (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6764, 66bitr3i 276 . . . . . . . 8 (𝑓𝑊 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6860, 61, 673bitr4ri 303 . . . . . . 7 (𝑓𝑊𝑓𝐿𝑓)
6968a1i 11 . . . . . 6 (⊤ → (𝑓𝑊𝑓𝐿𝑓))
708, 19, 51, 69iserd 8587 . . . . 5 (⊤ → 𝐿 Er 𝑊)
7170mptru 1547 . . . 4 𝐿 Er 𝑊
72 simpl 483 . . . . . . . . . . 11 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝑊)
73 foelrn 7032 . . . . . . . . . . 11 ((𝑆:dom 𝑆onto𝑊𝑎𝑊) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
7422, 72, 73sylancr 587 . . . . . . . . . 10 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
75 simprl 768 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ dom 𝑆)
76 simprr 770 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑎 = (𝑆𝑟))
7776eqcomd 2742 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆𝑟) = 𝑎)
78 fniniseg 6987 . . . . . . . . . . . 12 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎)))
7924, 78ax-mp 5 . . . . . . . . . . 11 (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎))
8075, 77, 79sylanbrc 583 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (𝑆 “ {𝑎}))
81 simplr 766 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇𝑎))
8276fveq2d 6823 . . . . . . . . . . . . . . 15 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑇𝑎) = (𝑇‘(𝑆𝑟)))
8382rneqd 5873 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ran (𝑇𝑎) = ran (𝑇‘(𝑆𝑟)))
8481, 83eleqtrd 2839 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇‘(𝑆𝑟)))
851, 2, 3, 4, 14, 15efgsp1 19430 . . . . . . . . . . . . 13 ((𝑟 ∈ dom 𝑆𝑏 ∈ ran (𝑇‘(𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
8675, 84, 85syl2anc 584 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
871, 2, 3, 4, 14, 15efgsdm 19423 . . . . . . . . . . . . . . . 16 (𝑟 ∈ dom 𝑆 ↔ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑟‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑟))(𝑟𝑖) ∈ ran (𝑇‘(𝑟‘(𝑖 − 1)))))
8887simp1bi 1144 . . . . . . . . . . . . . . 15 (𝑟 ∈ dom 𝑆𝑟 ∈ (Word 𝑊 ∖ {∅}))
8988ad2antrl 725 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (Word 𝑊 ∖ {∅}))
9089eldifad 3909 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ Word 𝑊)
911, 2, 3, 4efgtf 19415 . . . . . . . . . . . . . . . . 17 (𝑎𝑊 → ((𝑇𝑎) = (𝑓 ∈ (0...(♯‘𝑎)), 𝑔 ∈ (𝐼 × 2o) ↦ (𝑎 splice ⟨𝑓, 𝑓, ⟨“𝑔(𝑀𝑔)”⟩⟩)) ∧ (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊))
9291simprd 496 . . . . . . . . . . . . . . . 16 (𝑎𝑊 → (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊)
9392frnd 6653 . . . . . . . . . . . . . . 15 (𝑎𝑊 → ran (𝑇𝑎) ⊆ 𝑊)
9493sselda 3931 . . . . . . . . . . . . . 14 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏𝑊)
9594adantr 481 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏𝑊)
961, 2, 3, 4, 14, 15efgsval2 19426 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊𝑏𝑊 ∧ (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
9790, 95, 86, 96syl3anc 1370 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
98 fniniseg 6987 . . . . . . . . . . . . 13 (𝑆 Fn dom 𝑆 → ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)))
9924, 98ax-mp 5 . . . . . . . . . . . 12 ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏))
10086, 97, 99sylanbrc 583 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}))
10195s1cld 14399 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ⟨“𝑏”⟩ ∈ Word 𝑊)
102 eldifsn 4733 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑟 ∈ Word 𝑊𝑟 ≠ ∅))
103 lennncl 14329 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ Word 𝑊𝑟 ≠ ∅) → (♯‘𝑟) ∈ ℕ)
104102, 103sylbi 216 . . . . . . . . . . . . . . 15 (𝑟 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝑟) ∈ ℕ)
10589, 104syl 17 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (♯‘𝑟) ∈ ℕ)
106 lbfzo0 13520 . . . . . . . . . . . . . 14 (0 ∈ (0..^(♯‘𝑟)) ↔ (♯‘𝑟) ∈ ℕ)
107105, 106sylibr 233 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 0 ∈ (0..^(♯‘𝑟)))
108 ccatval1 14372 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊 ∧ ⟨“𝑏”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
10990, 101, 107, 108syl3anc 1370 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
110109eqcomd 2742 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
111 fveq1 6818 . . . . . . . . . . . 12 (𝑠 = (𝑟 ++ ⟨“𝑏”⟩) → (𝑠‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
112111rspceeqv 3584 . . . . . . . . . . 11 (((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ∧ (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0)) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
113100, 110, 112syl2anc 584 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
11474, 80, 113reximssdv 3165 . . . . . . . . 9 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
1151, 2, 3, 4, 14, 15, 6efgrelexlema 19442 . . . . . . . . 9 (𝑎𝐿𝑏 ↔ ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
116114, 115sylibr 233 . . . . . . . 8 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝐿𝑏)
117 vex 3445 . . . . . . . . 9 𝑏 ∈ V
118 vex 3445 . . . . . . . . 9 𝑎 ∈ V
119117, 118elec 8605 . . . . . . . 8 (𝑏 ∈ [𝑎]𝐿𝑎𝐿𝑏)
120116, 119sylibr 233 . . . . . . 7 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏 ∈ [𝑎]𝐿)
121120ex 413 . . . . . 6 (𝑎𝑊 → (𝑏 ∈ ran (𝑇𝑎) → 𝑏 ∈ [𝑎]𝐿))
122121ssrdv 3937 . . . . 5 (𝑎𝑊 → ran (𝑇𝑎) ⊆ [𝑎]𝐿)
123122rgen 3063 . . . 4 𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿
1241fvexi 6833 . . . . . 6 𝑊 ∈ V
125 erex 8585 . . . . . 6 (𝐿 Er 𝑊 → (𝑊 ∈ V → 𝐿 ∈ V))
12671, 124, 125mp2 9 . . . . 5 𝐿 ∈ V
127 ereq1 8568 . . . . . 6 (𝑟 = 𝐿 → (𝑟 Er 𝑊𝐿 Er 𝑊))
128 eceq2 8601 . . . . . . . 8 (𝑟 = 𝐿 → [𝑎]𝑟 = [𝑎]𝐿)
129128sseq2d 3963 . . . . . . 7 (𝑟 = 𝐿 → (ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇𝑎) ⊆ [𝑎]𝐿))
130129ralbidv 3170 . . . . . 6 (𝑟 = 𝐿 → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
131127, 130anbi12d 631 . . . . 5 (𝑟 = 𝐿 → ((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿)))
132126, 131elab 3619 . . . 4 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
13371, 123, 132mpbir2an 708 . . 3 𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
134 intss1 4908 . . 3 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿)
135133, 134ax-mp 5 . 2 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿
1365, 135eqsstri 3965 1 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wtru 1541  wcel 2105  {cab 2713  wne 2940  wral 3061  wrex 3070  {crab 3403  Vcvv 3441  cdif 3894  wss 3897  c0 4268  {csn 4572  cop 4578  cotp 4580   cint 4893   ciun 4938   class class class wbr 5089  {copab 5151  cmpt 5172   I cid 5511   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Rel wrel 5619   Fn wfn 6468  wf 6469  ontowfo 6471  cfv 6473  (class class class)co 7329  cmpo 7331  1oc1o 8352  2oc2o 8353   Er wer 8558  [cec 8559  0cc0 10964  1c1 10965  cmin 11298  cn 12066  ...cfz 13332  ..^cfzo 13475  chash 14137  Word cword 14309   ++ cconcat 14365  ⟨“cs1 14391   splice csplice 14552  ⟨“cs2 14645   ~FG cefg 19399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-ot 4581  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-er 8561  df-ec 8563  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-n0 12327  df-xnn0 12399  df-z 12413  df-uz 12676  df-rp 12824  df-fz 13333  df-fzo 13476  df-hash 14138  df-word 14310  df-concat 14366  df-s1 14392  df-substr 14444  df-pfx 14474  df-splice 14553  df-s2 14652  df-efg 19402
This theorem is referenced by:  efgrelex  19444
  Copyright terms: Public domain W3C validator