MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgrelexlemb Structured version   Visualization version   GIF version

Theorem efgrelexlemb 19271
Description: If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgrelexlem.1 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
Assertion
Ref Expression
efgrelexlemb 𝐿
Distinct variable groups:   𝑐,𝑑,𝑖,𝑗   𝑦,𝑧   𝑛,𝑐,𝑡,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑀,𝑐   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑗   𝑘,𝑐,𝑇,𝑖,𝑗,𝑚,𝑡,𝑥   𝑊,𝑐   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊,𝑖,𝑗   ,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑐,𝑑,𝑖,𝑗   𝐼,𝑐,𝑖,𝑗,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑖,𝑗,𝑘,𝑚,𝑛,𝑐,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgrelexlemb
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . 3 = ( ~FG𝐼)
3 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgval2 19245 . 2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
6 efgrelexlem.1 . . . . . . . 8 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
76relopabiv 5719 . . . . . . 7 Rel 𝐿
87a1i 11 . . . . . 6 (⊤ → Rel 𝐿)
9 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑓𝐿𝑔)
10 eqcom 2745 . . . . . . . . . 10 ((𝑎‘0) = (𝑏‘0) ↔ (𝑏‘0) = (𝑎‘0))
11102rexbii 3178 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0))
12 rexcom 3281 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1311, 12bitri 274 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
14 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
15 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
161, 2, 3, 4, 14, 15, 6efgrelexlema 19270 . . . . . . . 8 (𝑓𝐿𝑔 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0))
171, 2, 3, 4, 14, 15, 6efgrelexlema 19270 . . . . . . . 8 (𝑔𝐿𝑓 ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1813, 16, 173bitr4i 302 . . . . . . 7 (𝑓𝐿𝑔𝑔𝐿𝑓)
199, 18sylib 217 . . . . . 6 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑔𝐿𝑓)
201, 2, 3, 4, 14, 15, 6efgrelexlema 19270 . . . . . . . . 9 (𝑔𝐿 ↔ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0))
21 reeanv 3292 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) ↔ (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)))
221, 2, 3, 4, 14, 15efgsfo 19260 . . . . . . . . . . . . . . . . . . . 20 𝑆:dom 𝑆onto𝑊
23 fofn 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑆 Fn dom 𝑆
25 fniniseg 6919 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔)))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔))
27 fniniseg 6919 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)))
2824, 27ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔))
29 eqtr3 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔) → (𝑆𝑟) = (𝑆𝑏))
301, 2, 3, 4, 14, 15efgred 19269 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑟‘0) = (𝑏‘0))
3130eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
32313expa 1116 . . . . . . . . . . . . . . . . . . . 20 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
3329, 32sylan2 592 . . . . . . . . . . . . . . . . . . 19 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ ((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3433an4s 656 . . . . . . . . . . . . . . . . . 18 (((𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔) ∧ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3526, 28, 34syl2anb 597 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (𝑏‘0) = (𝑟‘0))
36 eqeq2 2750 . . . . . . . . . . . . . . . . 17 ((𝑟‘0) = (𝑠‘0) → ((𝑏‘0) = (𝑟‘0) ↔ (𝑏‘0) = (𝑠‘0)))
3735, 36syl5ibcom 244 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑟‘0) = (𝑠‘0) → (𝑏‘0) = (𝑠‘0)))
3837reximdv 3201 . . . . . . . . . . . . . . 15 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
39 eqeq1 2742 . . . . . . . . . . . . . . . . 17 ((𝑎‘0) = (𝑏‘0) → ((𝑎‘0) = (𝑠‘0) ↔ (𝑏‘0) = (𝑠‘0)))
4039rexbidv 3225 . . . . . . . . . . . . . . . 16 ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0) ↔ ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
4140imbi2d 340 . . . . . . . . . . . . . . 15 ((𝑎‘0) = (𝑏‘0) → ((∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)) ↔ (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0))))
4238, 41syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4342rexlimdva 3212 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑆 “ {𝑔}) → (∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4443impd 410 . . . . . . . . . . . 12 (𝑟 ∈ (𝑆 “ {𝑔}) → ((∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)))
4544rexlimiv 3208 . . . . . . . . . . 11 (∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4645reximi 3174 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4721, 46sylbir 234 . . . . . . . . 9 ((∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4816, 20, 47syl2anb 597 . . . . . . . 8 ((𝑓𝐿𝑔𝑔𝐿) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
491, 2, 3, 4, 14, 15, 6efgrelexlema 19270 . . . . . . . 8 (𝑓𝐿 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
5048, 49sylibr 233 . . . . . . 7 ((𝑓𝐿𝑔𝑔𝐿) → 𝑓𝐿)
5150adantl 481 . . . . . 6 ((⊤ ∧ (𝑓𝐿𝑔𝑔𝐿)) → 𝑓𝐿)
52 eqid 2738 . . . . . . . . . . . 12 (𝑎‘0) = (𝑎‘0)
53 fveq1 6755 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (𝑏‘0) = (𝑎‘0))
5453rspceeqv 3567 . . . . . . . . . . . 12 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ (𝑎‘0) = (𝑎‘0)) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5552, 54mpan2 687 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑓}) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5655pm4.71i 559 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)))
57 fniniseg 6919 . . . . . . . . . . 11 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓)))
5824, 57ax-mp 5 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
5956, 58bitr3i 276 . . . . . . . . 9 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
6059rexbii2 3175 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
611, 2, 3, 4, 14, 15, 6efgrelexlema 19270 . . . . . . . 8 (𝑓𝐿𝑓 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
62 forn 6675 . . . . . . . . . . 11 (𝑆:dom 𝑆onto𝑊 → ran 𝑆 = 𝑊)
6322, 62ax-mp 5 . . . . . . . . . 10 ran 𝑆 = 𝑊
6463eleq2i 2830 . . . . . . . . 9 (𝑓 ∈ ran 𝑆𝑓𝑊)
65 fvelrnb 6812 . . . . . . . . . 10 (𝑆 Fn dom 𝑆 → (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓))
6624, 65ax-mp 5 . . . . . . . . 9 (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6764, 66bitr3i 276 . . . . . . . 8 (𝑓𝑊 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6860, 61, 673bitr4ri 303 . . . . . . 7 (𝑓𝑊𝑓𝐿𝑓)
6968a1i 11 . . . . . 6 (⊤ → (𝑓𝑊𝑓𝐿𝑓))
708, 19, 51, 69iserd 8482 . . . . 5 (⊤ → 𝐿 Er 𝑊)
7170mptru 1546 . . . 4 𝐿 Er 𝑊
72 simpl 482 . . . . . . . . . . 11 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝑊)
73 foelrn 6964 . . . . . . . . . . 11 ((𝑆:dom 𝑆onto𝑊𝑎𝑊) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
7422, 72, 73sylancr 586 . . . . . . . . . 10 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
75 simprl 767 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ dom 𝑆)
76 simprr 769 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑎 = (𝑆𝑟))
7776eqcomd 2744 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆𝑟) = 𝑎)
78 fniniseg 6919 . . . . . . . . . . . 12 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎)))
7924, 78ax-mp 5 . . . . . . . . . . 11 (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎))
8075, 77, 79sylanbrc 582 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (𝑆 “ {𝑎}))
81 simplr 765 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇𝑎))
8276fveq2d 6760 . . . . . . . . . . . . . . 15 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑇𝑎) = (𝑇‘(𝑆𝑟)))
8382rneqd 5836 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ran (𝑇𝑎) = ran (𝑇‘(𝑆𝑟)))
8481, 83eleqtrd 2841 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇‘(𝑆𝑟)))
851, 2, 3, 4, 14, 15efgsp1 19258 . . . . . . . . . . . . 13 ((𝑟 ∈ dom 𝑆𝑏 ∈ ran (𝑇‘(𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
8675, 84, 85syl2anc 583 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
871, 2, 3, 4, 14, 15efgsdm 19251 . . . . . . . . . . . . . . . 16 (𝑟 ∈ dom 𝑆 ↔ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑟‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑟))(𝑟𝑖) ∈ ran (𝑇‘(𝑟‘(𝑖 − 1)))))
8887simp1bi 1143 . . . . . . . . . . . . . . 15 (𝑟 ∈ dom 𝑆𝑟 ∈ (Word 𝑊 ∖ {∅}))
8988ad2antrl 724 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (Word 𝑊 ∖ {∅}))
9089eldifad 3895 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ Word 𝑊)
911, 2, 3, 4efgtf 19243 . . . . . . . . . . . . . . . . 17 (𝑎𝑊 → ((𝑇𝑎) = (𝑓 ∈ (0...(♯‘𝑎)), 𝑔 ∈ (𝐼 × 2o) ↦ (𝑎 splice ⟨𝑓, 𝑓, ⟨“𝑔(𝑀𝑔)”⟩⟩)) ∧ (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊))
9291simprd 495 . . . . . . . . . . . . . . . 16 (𝑎𝑊 → (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊)
9392frnd 6592 . . . . . . . . . . . . . . 15 (𝑎𝑊 → ran (𝑇𝑎) ⊆ 𝑊)
9493sselda 3917 . . . . . . . . . . . . . 14 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏𝑊)
9594adantr 480 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏𝑊)
961, 2, 3, 4, 14, 15efgsval2 19254 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊𝑏𝑊 ∧ (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
9790, 95, 86, 96syl3anc 1369 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
98 fniniseg 6919 . . . . . . . . . . . . 13 (𝑆 Fn dom 𝑆 → ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)))
9924, 98ax-mp 5 . . . . . . . . . . . 12 ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏))
10086, 97, 99sylanbrc 582 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}))
10195s1cld 14236 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ⟨“𝑏”⟩ ∈ Word 𝑊)
102 eldifsn 4717 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑟 ∈ Word 𝑊𝑟 ≠ ∅))
103 lennncl 14165 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ Word 𝑊𝑟 ≠ ∅) → (♯‘𝑟) ∈ ℕ)
104102, 103sylbi 216 . . . . . . . . . . . . . . 15 (𝑟 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝑟) ∈ ℕ)
10589, 104syl 17 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (♯‘𝑟) ∈ ℕ)
106 lbfzo0 13355 . . . . . . . . . . . . . 14 (0 ∈ (0..^(♯‘𝑟)) ↔ (♯‘𝑟) ∈ ℕ)
107105, 106sylibr 233 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 0 ∈ (0..^(♯‘𝑟)))
108 ccatval1 14209 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊 ∧ ⟨“𝑏”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
10990, 101, 107, 108syl3anc 1369 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
110109eqcomd 2744 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
111 fveq1 6755 . . . . . . . . . . . 12 (𝑠 = (𝑟 ++ ⟨“𝑏”⟩) → (𝑠‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
112111rspceeqv 3567 . . . . . . . . . . 11 (((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ∧ (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0)) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
113100, 110, 112syl2anc 583 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
11474, 80, 113reximssdv 3204 . . . . . . . . 9 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
1151, 2, 3, 4, 14, 15, 6efgrelexlema 19270 . . . . . . . . 9 (𝑎𝐿𝑏 ↔ ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
116114, 115sylibr 233 . . . . . . . 8 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝐿𝑏)
117 vex 3426 . . . . . . . . 9 𝑏 ∈ V
118 vex 3426 . . . . . . . . 9 𝑎 ∈ V
119117, 118elec 8500 . . . . . . . 8 (𝑏 ∈ [𝑎]𝐿𝑎𝐿𝑏)
120116, 119sylibr 233 . . . . . . 7 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏 ∈ [𝑎]𝐿)
121120ex 412 . . . . . 6 (𝑎𝑊 → (𝑏 ∈ ran (𝑇𝑎) → 𝑏 ∈ [𝑎]𝐿))
122121ssrdv 3923 . . . . 5 (𝑎𝑊 → ran (𝑇𝑎) ⊆ [𝑎]𝐿)
123122rgen 3073 . . . 4 𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿
1241fvexi 6770 . . . . . 6 𝑊 ∈ V
125 erex 8480 . . . . . 6 (𝐿 Er 𝑊 → (𝑊 ∈ V → 𝐿 ∈ V))
12671, 124, 125mp2 9 . . . . 5 𝐿 ∈ V
127 ereq1 8463 . . . . . 6 (𝑟 = 𝐿 → (𝑟 Er 𝑊𝐿 Er 𝑊))
128 eceq2 8496 . . . . . . . 8 (𝑟 = 𝐿 → [𝑎]𝑟 = [𝑎]𝐿)
129128sseq2d 3949 . . . . . . 7 (𝑟 = 𝐿 → (ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇𝑎) ⊆ [𝑎]𝐿))
130129ralbidv 3120 . . . . . 6 (𝑟 = 𝐿 → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
131127, 130anbi12d 630 . . . . 5 (𝑟 = 𝐿 → ((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿)))
132126, 131elab 3602 . . . 4 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
13371, 123, 132mpbir2an 707 . . 3 𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
134 intss1 4891 . . 3 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿)
135133, 134ax-mp 5 . 2 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿
1365, 135eqsstri 3951 1 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  c0 4253  {csn 4558  cop 4564  cotp 4566   cint 4876   ciun 4921   class class class wbr 5070  {copab 5132  cmpt 5153   I cid 5479   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Rel wrel 5585   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  cmpo 7257  1oc1o 8260  2oc2o 8261   Er wer 8453  [cec 8454  0cc0 10802  1c1 10803  cmin 11135  cn 11903  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228   splice csplice 14390  ⟨“cs2 14482   ~FG cefg 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-s2 14489  df-efg 19230
This theorem is referenced by:  efgrelex  19272
  Copyright terms: Public domain W3C validator