Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . 3
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | efgval.r |
. . 3
⊢ ∼ = (
~FG ‘𝐼) |
3 | | efgval2.m |
. . 3
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
4 | | efgval2.t |
. . 3
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
5 | 1, 2, 3, 4 | efgval2 19114 |
. 2
⊢ ∼ =
∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
6 | | efgrelexlem.1 |
. . . . . . . 8
⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} |
7 | 6 | relopabiv 5690 |
. . . . . . 7
⊢ Rel 𝐿 |
8 | 7 | a1i 11 |
. . . . . 6
⊢ (⊤
→ Rel 𝐿) |
9 | | simpr 488 |
. . . . . . 7
⊢
((⊤ ∧ 𝑓𝐿𝑔) → 𝑓𝐿𝑔) |
10 | | eqcom 2744 |
. . . . . . . . . 10
⊢ ((𝑎‘0) = (𝑏‘0) ↔ (𝑏‘0) = (𝑎‘0)) |
11 | 10 | 2rexbii 3171 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0)) |
12 | | rexcom 3268 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0) ↔ ∃𝑏 ∈ (◡𝑆 “ {𝑔})∃𝑎 ∈ (◡𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0)) |
13 | 11, 12 | bitri 278 |
. . . . . . . 8
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑏 ∈ (◡𝑆 “ {𝑔})∃𝑎 ∈ (◡𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0)) |
14 | | efgred.d |
. . . . . . . . 9
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
15 | | efgred.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
16 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19139 |
. . . . . . . 8
⊢ (𝑓𝐿𝑔 ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0)) |
17 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19139 |
. . . . . . . 8
⊢ (𝑔𝐿𝑓 ↔ ∃𝑏 ∈ (◡𝑆 “ {𝑔})∃𝑎 ∈ (◡𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0)) |
18 | 13, 16, 17 | 3bitr4i 306 |
. . . . . . 7
⊢ (𝑓𝐿𝑔 ↔ 𝑔𝐿𝑓) |
19 | 9, 18 | sylib 221 |
. . . . . 6
⊢
((⊤ ∧ 𝑓𝐿𝑔) → 𝑔𝐿𝑓) |
20 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19139 |
. . . . . . . . 9
⊢ (𝑔𝐿ℎ ↔ ∃𝑟 ∈ (◡𝑆 “ {𝑔})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) |
21 | | reeanv 3279 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑟 ∈ (◡𝑆 “ {𝑔})(∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) ↔ (∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (◡𝑆 “ {𝑔})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0))) |
22 | 1, 2, 3, 4, 14, 15 | efgsfo 19129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑆:dom 𝑆–onto→𝑊 |
23 | | fofn 6635 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆:dom 𝑆–onto→𝑊 → 𝑆 Fn dom 𝑆) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑆 Fn dom 𝑆 |
25 | | fniniseg 6880 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 Fn dom 𝑆 → (𝑟 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑔))) |
26 | 24, 25 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑔)) |
27 | | fniniseg 6880 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 Fn dom 𝑆 → (𝑏 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑏) = 𝑔))) |
28 | 24, 27 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑏) = 𝑔)) |
29 | | eqtr3 2763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆‘𝑟) = 𝑔 ∧ (𝑆‘𝑏) = 𝑔) → (𝑆‘𝑟) = (𝑆‘𝑏)) |
30 | 1, 2, 3, 4, 14, 15 | efgred 19138 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = (𝑆‘𝑏)) → (𝑟‘0) = (𝑏‘0)) |
31 | 30 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = (𝑆‘𝑏)) → (𝑏‘0) = (𝑟‘0)) |
32 | 31 | 3expa 1120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆) ∧ (𝑆‘𝑟) = (𝑆‘𝑏)) → (𝑏‘0) = (𝑟‘0)) |
33 | 29, 32 | sylan2 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆) ∧ ((𝑆‘𝑟) = 𝑔 ∧ (𝑆‘𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0)) |
34 | 33 | an4s 660 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑔) ∧ (𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0)) |
35 | 26, 28, 34 | syl2anb 601 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → (𝑏‘0) = (𝑟‘0)) |
36 | | eqeq2 2749 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑟‘0) = (𝑠‘0) → ((𝑏‘0) = (𝑟‘0) ↔ (𝑏‘0) = (𝑠‘0))) |
37 | 35, 36 | syl5ibcom 248 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → ((𝑟‘0) = (𝑠‘0) → (𝑏‘0) = (𝑠‘0))) |
38 | 37 | reximdv 3192 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑏‘0) = (𝑠‘0))) |
39 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎‘0) = (𝑏‘0) → ((𝑎‘0) = (𝑠‘0) ↔ (𝑏‘0) = (𝑠‘0))) |
40 | 39 | rexbidv 3216 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0) ↔ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑏‘0) = (𝑠‘0))) |
41 | 40 | imbi2d 344 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎‘0) = (𝑏‘0) → ((∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) ↔ (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑏‘0) = (𝑠‘0)))) |
42 | 38, 41 | syl5ibrcom 250 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)))) |
43 | 42 | rexlimdva 3203 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ (◡𝑆 “ {𝑔}) → (∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)))) |
44 | 43 | impd 414 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ (◡𝑆 “ {𝑔}) → ((∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0))) |
45 | 44 | rexlimiv 3199 |
. . . . . . . . . . 11
⊢
(∃𝑟 ∈
(◡𝑆 “ {𝑔})(∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
46 | 45 | reximi 3166 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑟 ∈ (◡𝑆 “ {𝑔})(∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
47 | 21, 46 | sylbir 238 |
. . . . . . . . 9
⊢
((∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (◡𝑆 “ {𝑔})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
48 | 16, 20, 47 | syl2anb 601 |
. . . . . . . 8
⊢ ((𝑓𝐿𝑔 ∧ 𝑔𝐿ℎ) → ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
49 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19139 |
. . . . . . . 8
⊢ (𝑓𝐿ℎ ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
50 | 48, 49 | sylibr 237 |
. . . . . . 7
⊢ ((𝑓𝐿𝑔 ∧ 𝑔𝐿ℎ) → 𝑓𝐿ℎ) |
51 | 50 | adantl 485 |
. . . . . 6
⊢
((⊤ ∧ (𝑓𝐿𝑔 ∧ 𝑔𝐿ℎ)) → 𝑓𝐿ℎ) |
52 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑎‘0) = (𝑎‘0) |
53 | | fveq1 6716 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑎 → (𝑏‘0) = (𝑎‘0)) |
54 | 53 | rspceeqv 3552 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ (◡𝑆 “ {𝑓}) ∧ (𝑎‘0) = (𝑎‘0)) → ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) |
55 | 52, 54 | mpan2 691 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (◡𝑆 “ {𝑓}) → ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) |
56 | 55 | pm4.71i 563 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (◡𝑆 “ {𝑓}) ↔ (𝑎 ∈ (◡𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))) |
57 | | fniniseg 6880 |
. . . . . . . . . . 11
⊢ (𝑆 Fn dom 𝑆 → (𝑎 ∈ (◡𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆‘𝑎) = 𝑓))) |
58 | 24, 57 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (◡𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆‘𝑎) = 𝑓)) |
59 | 56, 58 | bitr3i 280 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (◡𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆‘𝑎) = 𝑓)) |
60 | 59 | rexbii2 3168 |
. . . . . . . 8
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓) |
61 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19139 |
. . . . . . . 8
⊢ (𝑓𝐿𝑓 ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) |
62 | | forn 6636 |
. . . . . . . . . . 11
⊢ (𝑆:dom 𝑆–onto→𝑊 → ran 𝑆 = 𝑊) |
63 | 22, 62 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran 𝑆 = 𝑊 |
64 | 63 | eleq2i 2829 |
. . . . . . . . 9
⊢ (𝑓 ∈ ran 𝑆 ↔ 𝑓 ∈ 𝑊) |
65 | | fvelrnb 6773 |
. . . . . . . . . 10
⊢ (𝑆 Fn dom 𝑆 → (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓)) |
66 | 24, 65 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓) |
67 | 64, 66 | bitr3i 280 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝑊 ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓) |
68 | 60, 61, 67 | 3bitr4ri 307 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑊 ↔ 𝑓𝐿𝑓) |
69 | 68 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑓 ∈ 𝑊 ↔ 𝑓𝐿𝑓)) |
70 | 8, 19, 51, 69 | iserd 8417 |
. . . . 5
⊢ (⊤
→ 𝐿 Er 𝑊) |
71 | 70 | mptru 1550 |
. . . 4
⊢ 𝐿 Er 𝑊 |
72 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑎 ∈ 𝑊) |
73 | | foelrn 6925 |
. . . . . . . . . . 11
⊢ ((𝑆:dom 𝑆–onto→𝑊 ∧ 𝑎 ∈ 𝑊) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆‘𝑟)) |
74 | 22, 72, 73 | sylancr 590 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆‘𝑟)) |
75 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ dom 𝑆) |
76 | | simprr 773 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑎 = (𝑆‘𝑟)) |
77 | 76 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑆‘𝑟) = 𝑎) |
78 | | fniniseg 6880 |
. . . . . . . . . . . 12
⊢ (𝑆 Fn dom 𝑆 → (𝑟 ∈ (◡𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑎))) |
79 | 24, 78 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ (◡𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑎)) |
80 | 75, 77, 79 | sylanbrc 586 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ (◡𝑆 “ {𝑎})) |
81 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑏 ∈ ran (𝑇‘𝑎)) |
82 | 76 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑇‘𝑎) = (𝑇‘(𝑆‘𝑟))) |
83 | 82 | rneqd 5807 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → ran (𝑇‘𝑎) = ran (𝑇‘(𝑆‘𝑟))) |
84 | 81, 83 | eleqtrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑏 ∈ ran (𝑇‘(𝑆‘𝑟))) |
85 | 1, 2, 3, 4, 14, 15 | efgsp1 19127 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ ran (𝑇‘(𝑆‘𝑟))) → (𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆) |
86 | 75, 84, 85 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆) |
87 | 1, 2, 3, 4, 14, 15 | efgsdm 19120 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ dom 𝑆 ↔ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑟‘0) ∈ 𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘𝑟))(𝑟‘𝑖) ∈ ran (𝑇‘(𝑟‘(𝑖 − 1))))) |
88 | 87 | simp1bi 1147 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ dom 𝑆 → 𝑟 ∈ (Word 𝑊 ∖ {∅})) |
89 | 88 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ (Word 𝑊 ∖ {∅})) |
90 | 89 | eldifad 3878 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ Word 𝑊) |
91 | 1, 2, 3, 4 | efgtf 19112 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ 𝑊 → ((𝑇‘𝑎) = (𝑓 ∈ (0...(♯‘𝑎)), 𝑔 ∈ (𝐼 × 2o) ↦ (𝑎 splice 〈𝑓, 𝑓, 〈“𝑔(𝑀‘𝑔)”〉〉)) ∧ (𝑇‘𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊)) |
92 | 91 | simprd 499 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ 𝑊 → (𝑇‘𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊) |
93 | 92 | frnd 6553 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝑊 → ran (𝑇‘𝑎) ⊆ 𝑊) |
94 | 93 | sselda 3901 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑏 ∈ 𝑊) |
95 | 94 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑏 ∈ 𝑊) |
96 | 1, 2, 3, 4, 14, 15 | efgsval2 19123 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ Word 𝑊 ∧ 𝑏 ∈ 𝑊 ∧ (𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆) → (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏) |
97 | 90, 95, 86, 96 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏) |
98 | | fniniseg 6880 |
. . . . . . . . . . . . 13
⊢ (𝑆 Fn dom 𝑆 → ((𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏}) ↔ ((𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏))) |
99 | 24, 98 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏}) ↔ ((𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏)) |
100 | 86, 97, 99 | sylanbrc 586 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏})) |
101 | 95 | s1cld 14160 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 〈“𝑏”〉 ∈ Word 𝑊) |
102 | | eldifsn 4700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅)) |
103 | | lennncl 14089 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅) → (♯‘𝑟) ∈
ℕ) |
104 | 102, 103 | sylbi 220 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ (Word 𝑊 ∖ {∅}) →
(♯‘𝑟) ∈
ℕ) |
105 | 89, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (♯‘𝑟) ∈ ℕ) |
106 | | lbfzo0 13282 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(0..^(♯‘𝑟))
↔ (♯‘𝑟)
∈ ℕ) |
107 | 105, 106 | sylibr 237 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 0 ∈ (0..^(♯‘𝑟))) |
108 | | ccatval1 14133 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ Word 𝑊 ∧ 〈“𝑏”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝑟))) → ((𝑟 ++ 〈“𝑏”〉)‘0) = (𝑟‘0)) |
109 | 90, 101, 107, 108 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → ((𝑟 ++ 〈“𝑏”〉)‘0) = (𝑟‘0)) |
110 | 109 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑟‘0) = ((𝑟 ++ 〈“𝑏”〉)‘0)) |
111 | | fveq1 6716 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑟 ++ 〈“𝑏”〉) → (𝑠‘0) = ((𝑟 ++ 〈“𝑏”〉)‘0)) |
112 | 111 | rspceeqv 3552 |
. . . . . . . . . . 11
⊢ (((𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏}) ∧ (𝑟‘0) = ((𝑟 ++ 〈“𝑏”〉)‘0)) → ∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
113 | 100, 110,
112 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → ∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
114 | 74, 80, 113 | reximssdv 3195 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → ∃𝑟 ∈ (◡𝑆 “ {𝑎})∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
115 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19139 |
. . . . . . . . 9
⊢ (𝑎𝐿𝑏 ↔ ∃𝑟 ∈ (◡𝑆 “ {𝑎})∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
116 | 114, 115 | sylibr 237 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑎𝐿𝑏) |
117 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
118 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
119 | 117, 118 | elec 8435 |
. . . . . . . 8
⊢ (𝑏 ∈ [𝑎]𝐿 ↔ 𝑎𝐿𝑏) |
120 | 116, 119 | sylibr 237 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑏 ∈ [𝑎]𝐿) |
121 | 120 | ex 416 |
. . . . . 6
⊢ (𝑎 ∈ 𝑊 → (𝑏 ∈ ran (𝑇‘𝑎) → 𝑏 ∈ [𝑎]𝐿)) |
122 | 121 | ssrdv 3907 |
. . . . 5
⊢ (𝑎 ∈ 𝑊 → ran (𝑇‘𝑎) ⊆ [𝑎]𝐿) |
123 | 122 | rgen 3071 |
. . . 4
⊢
∀𝑎 ∈
𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿 |
124 | 1 | fvexi 6731 |
. . . . . 6
⊢ 𝑊 ∈ V |
125 | | erex 8415 |
. . . . . 6
⊢ (𝐿 Er 𝑊 → (𝑊 ∈ V → 𝐿 ∈ V)) |
126 | 71, 124, 125 | mp2 9 |
. . . . 5
⊢ 𝐿 ∈ V |
127 | | ereq1 8398 |
. . . . . 6
⊢ (𝑟 = 𝐿 → (𝑟 Er 𝑊 ↔ 𝐿 Er 𝑊)) |
128 | | eceq2 8431 |
. . . . . . . 8
⊢ (𝑟 = 𝐿 → [𝑎]𝑟 = [𝑎]𝐿) |
129 | 128 | sseq2d 3933 |
. . . . . . 7
⊢ (𝑟 = 𝐿 → (ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇‘𝑎) ⊆ [𝑎]𝐿)) |
130 | 129 | ralbidv 3118 |
. . . . . 6
⊢ (𝑟 = 𝐿 → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿)) |
131 | 127, 130 | anbi12d 634 |
. . . . 5
⊢ (𝑟 = 𝐿 → ((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) ↔ (𝐿 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿))) |
132 | 126, 131 | elab 3587 |
. . . 4
⊢ (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ↔ (𝐿 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿)) |
133 | 71, 123, 132 | mpbir2an 711 |
. . 3
⊢ 𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
134 | | intss1 4874 |
. . 3
⊢ (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} → ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿) |
135 | 133, 134 | ax-mp 5 |
. 2
⊢ ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿 |
136 | 5, 135 | eqsstri 3935 |
1
⊢ ∼
⊆ 𝐿 |