MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgrelexlemb Structured version   Visualization version   GIF version

Theorem efgrelexlemb 19734
Description: If two words 𝐴, 𝐵 are related under the free group equivalence, then there exist two extension sequences 𝑎, 𝑏 such that 𝑎 ends at 𝐴, 𝑏 ends at 𝐵, and 𝑎 and 𝐵 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgrelexlem.1 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
Assertion
Ref Expression
efgrelexlemb 𝐿
Distinct variable groups:   𝑐,𝑑,𝑖,𝑗   𝑦,𝑧   𝑛,𝑐,𝑡,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑀,𝑐   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑗   𝑘,𝑐,𝑇,𝑖,𝑗,𝑚,𝑡,𝑥   𝑊,𝑐   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊,𝑖,𝑗   ,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑐,𝑑,𝑖,𝑗   𝐼,𝑐,𝑖,𝑗,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑐,𝑑,𝑖,𝑗,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑖,𝑗,𝑘,𝑚,𝑛,𝑐,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgrelexlemb
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . 3 = ( ~FG𝐼)
3 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgval2 19708 . 2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
6 efgrelexlem.1 . . . . . . . 8 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ∃𝑐 ∈ (𝑆 “ {𝑖})∃𝑑 ∈ (𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)}
76relopabiv 5822 . . . . . . 7 Rel 𝐿
87a1i 11 . . . . . 6 (⊤ → Rel 𝐿)
9 simpr 483 . . . . . . 7 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑓𝐿𝑔)
10 eqcom 2732 . . . . . . . . . 10 ((𝑎‘0) = (𝑏‘0) ↔ (𝑏‘0) = (𝑎‘0))
11102rexbii 3118 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0))
12 rexcom 3277 . . . . . . . . 9 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1311, 12bitri 274 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
14 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
15 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
161, 2, 3, 4, 14, 15, 6efgrelexlema 19733 . . . . . . . 8 (𝑓𝐿𝑔 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0))
171, 2, 3, 4, 14, 15, 6efgrelexlema 19733 . . . . . . . 8 (𝑔𝐿𝑓 ↔ ∃𝑏 ∈ (𝑆 “ {𝑔})∃𝑎 ∈ (𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0))
1813, 16, 173bitr4i 302 . . . . . . 7 (𝑓𝐿𝑔𝑔𝐿𝑓)
199, 18sylib 217 . . . . . 6 ((⊤ ∧ 𝑓𝐿𝑔) → 𝑔𝐿𝑓)
201, 2, 3, 4, 14, 15, 6efgrelexlema 19733 . . . . . . . . 9 (𝑔𝐿 ↔ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0))
21 reeanv 3216 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) ↔ (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)))
221, 2, 3, 4, 14, 15efgsfo 19723 . . . . . . . . . . . . . . . . . . . 20 𝑆:dom 𝑆onto𝑊
23 fofn 6812 . . . . . . . . . . . . . . . . . . . 20 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑆 Fn dom 𝑆
25 fniniseg 7068 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔)))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ (𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔))
27 fniniseg 7068 . . . . . . . . . . . . . . . . . . 19 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)))
2824, 27ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔))
29 eqtr3 2751 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔) → (𝑆𝑟) = (𝑆𝑏))
301, 2, 3, 4, 14, 15efgred 19732 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑟‘0) = (𝑏‘0))
3130eqcomd 2731 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆 ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
32313expa 1115 . . . . . . . . . . . . . . . . . . . 20 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ (𝑆𝑟) = (𝑆𝑏)) → (𝑏‘0) = (𝑟‘0))
3329, 32sylan2 591 . . . . . . . . . . . . . . . . . . 19 (((𝑟 ∈ dom 𝑆𝑏 ∈ dom 𝑆) ∧ ((𝑆𝑟) = 𝑔 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3433an4s 658 . . . . . . . . . . . . . . . . . 18 (((𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑔) ∧ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0))
3526, 28, 34syl2anb 596 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (𝑏‘0) = (𝑟‘0))
36 eqeq2 2737 . . . . . . . . . . . . . . . . 17 ((𝑟‘0) = (𝑠‘0) → ((𝑏‘0) = (𝑟‘0) ↔ (𝑏‘0) = (𝑠‘0)))
3735, 36syl5ibcom 244 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑟‘0) = (𝑠‘0) → (𝑏‘0) = (𝑠‘0)))
3837reximdv 3159 . . . . . . . . . . . . . . 15 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
39 eqeq1 2729 . . . . . . . . . . . . . . . . 17 ((𝑎‘0) = (𝑏‘0) → ((𝑎‘0) = (𝑠‘0) ↔ (𝑏‘0) = (𝑠‘0)))
4039rexbidv 3168 . . . . . . . . . . . . . . . 16 ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0) ↔ ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0)))
4140imbi2d 339 . . . . . . . . . . . . . . 15 ((𝑎‘0) = (𝑏‘0) → ((∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)) ↔ (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑏‘0) = (𝑠‘0))))
4238, 41syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑟 ∈ (𝑆 “ {𝑔}) ∧ 𝑏 ∈ (𝑆 “ {𝑔})) → ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4342rexlimdva 3144 . . . . . . . . . . . . 13 (𝑟 ∈ (𝑆 “ {𝑔}) → (∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))))
4443impd 409 . . . . . . . . . . . 12 (𝑟 ∈ (𝑆 “ {𝑔}) → ((∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0)))
4544rexlimiv 3137 . . . . . . . . . . 11 (∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4645reximi 3073 . . . . . . . . . 10 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑟 ∈ (𝑆 “ {𝑔})(∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4721, 46sylbir 234 . . . . . . . . 9 ((∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (𝑆 “ {𝑔})∃𝑠 ∈ (𝑆 “ {})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
4816, 20, 47syl2anb 596 . . . . . . . 8 ((𝑓𝐿𝑔𝑔𝐿) → ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
491, 2, 3, 4, 14, 15, 6efgrelexlema 19733 . . . . . . . 8 (𝑓𝐿 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑠 ∈ (𝑆 “ {})(𝑎‘0) = (𝑠‘0))
5048, 49sylibr 233 . . . . . . 7 ((𝑓𝐿𝑔𝑔𝐿) → 𝑓𝐿)
5150adantl 480 . . . . . 6 ((⊤ ∧ (𝑓𝐿𝑔𝑔𝐿)) → 𝑓𝐿)
52 eqid 2725 . . . . . . . . . . . 12 (𝑎‘0) = (𝑎‘0)
53 fveq1 6895 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (𝑏‘0) = (𝑎‘0))
5453rspceeqv 3628 . . . . . . . . . . . 12 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ (𝑎‘0) = (𝑎‘0)) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5552, 54mpan2 689 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑓}) → ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
5655pm4.71i 558 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)))
57 fniniseg 7068 . . . . . . . . . . 11 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓)))
5824, 57ax-mp 5 . . . . . . . . . 10 (𝑎 ∈ (𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
5956, 58bitr3i 276 . . . . . . . . 9 ((𝑎 ∈ (𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑓))
6059rexbii2 3079 . . . . . . . 8 (∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
611, 2, 3, 4, 14, 15, 6efgrelexlema 19733 . . . . . . . 8 (𝑓𝐿𝑓 ↔ ∃𝑎 ∈ (𝑆 “ {𝑓})∃𝑏 ∈ (𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))
62 forn 6813 . . . . . . . . . . 11 (𝑆:dom 𝑆onto𝑊 → ran 𝑆 = 𝑊)
6322, 62ax-mp 5 . . . . . . . . . 10 ran 𝑆 = 𝑊
6463eleq2i 2817 . . . . . . . . 9 (𝑓 ∈ ran 𝑆𝑓𝑊)
65 fvelrnb 6958 . . . . . . . . . 10 (𝑆 Fn dom 𝑆 → (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓))
6624, 65ax-mp 5 . . . . . . . . 9 (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6764, 66bitr3i 276 . . . . . . . 8 (𝑓𝑊 ↔ ∃𝑎 ∈ dom 𝑆(𝑆𝑎) = 𝑓)
6860, 61, 673bitr4ri 303 . . . . . . 7 (𝑓𝑊𝑓𝐿𝑓)
6968a1i 11 . . . . . 6 (⊤ → (𝑓𝑊𝑓𝐿𝑓))
708, 19, 51, 69iserd 8751 . . . . 5 (⊤ → 𝐿 Er 𝑊)
7170mptru 1540 . . . 4 𝐿 Er 𝑊
72 simpl 481 . . . . . . . . . . 11 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝑊)
73 foelrn 7116 . . . . . . . . . . 11 ((𝑆:dom 𝑆onto𝑊𝑎𝑊) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
7422, 72, 73sylancr 585 . . . . . . . . . 10 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆𝑟))
75 simprl 769 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ dom 𝑆)
76 simprr 771 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑎 = (𝑆𝑟))
7776eqcomd 2731 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆𝑟) = 𝑎)
78 fniniseg 7068 . . . . . . . . . . . 12 (𝑆 Fn dom 𝑆 → (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎)))
7924, 78ax-mp 5 . . . . . . . . . . 11 (𝑟 ∈ (𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆𝑟) = 𝑎))
8075, 77, 79sylanbrc 581 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (𝑆 “ {𝑎}))
81 simplr 767 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇𝑎))
8276fveq2d 6900 . . . . . . . . . . . . . . 15 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑇𝑎) = (𝑇‘(𝑆𝑟)))
8382rneqd 5940 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ran (𝑇𝑎) = ran (𝑇‘(𝑆𝑟)))
8481, 83eleqtrd 2827 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏 ∈ ran (𝑇‘(𝑆𝑟)))
851, 2, 3, 4, 14, 15efgsp1 19721 . . . . . . . . . . . . 13 ((𝑟 ∈ dom 𝑆𝑏 ∈ ran (𝑇‘(𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
8675, 84, 85syl2anc 582 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆)
871, 2, 3, 4, 14, 15efgsdm 19714 . . . . . . . . . . . . . . . 16 (𝑟 ∈ dom 𝑆 ↔ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑟‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑟))(𝑟𝑖) ∈ ran (𝑇‘(𝑟‘(𝑖 − 1)))))
8887simp1bi 1142 . . . . . . . . . . . . . . 15 (𝑟 ∈ dom 𝑆𝑟 ∈ (Word 𝑊 ∖ {∅}))
8988ad2antrl 726 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ (Word 𝑊 ∖ {∅}))
9089eldifad 3956 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑟 ∈ Word 𝑊)
911, 2, 3, 4efgtf 19706 . . . . . . . . . . . . . . . . 17 (𝑎𝑊 → ((𝑇𝑎) = (𝑓 ∈ (0...(♯‘𝑎)), 𝑔 ∈ (𝐼 × 2o) ↦ (𝑎 splice ⟨𝑓, 𝑓, ⟨“𝑔(𝑀𝑔)”⟩⟩)) ∧ (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊))
9291simprd 494 . . . . . . . . . . . . . . . 16 (𝑎𝑊 → (𝑇𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊)
9392frnd 6731 . . . . . . . . . . . . . . 15 (𝑎𝑊 → ran (𝑇𝑎) ⊆ 𝑊)
9493sselda 3976 . . . . . . . . . . . . . 14 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏𝑊)
9594adantr 479 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 𝑏𝑊)
961, 2, 3, 4, 14, 15efgsval2 19717 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊𝑏𝑊 ∧ (𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
9790, 95, 86, 96syl3anc 1368 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)
98 fniniseg 7068 . . . . . . . . . . . . 13 (𝑆 Fn dom 𝑆 → ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏)))
9924, 98ax-mp 5 . . . . . . . . . . . 12 ((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ↔ ((𝑟 ++ ⟨“𝑏”⟩) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ ⟨“𝑏”⟩)) = 𝑏))
10086, 97, 99sylanbrc 581 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}))
10195s1cld 14597 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ⟨“𝑏”⟩ ∈ Word 𝑊)
102 eldifsn 4792 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑟 ∈ Word 𝑊𝑟 ≠ ∅))
103 lennncl 14528 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ Word 𝑊𝑟 ≠ ∅) → (♯‘𝑟) ∈ ℕ)
104102, 103sylbi 216 . . . . . . . . . . . . . . 15 (𝑟 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝑟) ∈ ℕ)
10589, 104syl 17 . . . . . . . . . . . . . 14 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (♯‘𝑟) ∈ ℕ)
106 lbfzo0 13712 . . . . . . . . . . . . . 14 (0 ∈ (0..^(♯‘𝑟)) ↔ (♯‘𝑟) ∈ ℕ)
107105, 106sylibr 233 . . . . . . . . . . . . 13 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → 0 ∈ (0..^(♯‘𝑟)))
108 ccatval1 14571 . . . . . . . . . . . . 13 ((𝑟 ∈ Word 𝑊 ∧ ⟨“𝑏”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
10990, 101, 107, 108syl3anc 1368 . . . . . . . . . . . 12 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ((𝑟 ++ ⟨“𝑏”⟩)‘0) = (𝑟‘0))
110109eqcomd 2731 . . . . . . . . . . 11 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
111 fveq1 6895 . . . . . . . . . . . 12 (𝑠 = (𝑟 ++ ⟨“𝑏”⟩) → (𝑠‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0))
112111rspceeqv 3628 . . . . . . . . . . 11 (((𝑟 ++ ⟨“𝑏”⟩) ∈ (𝑆 “ {𝑏}) ∧ (𝑟‘0) = ((𝑟 ++ ⟨“𝑏”⟩)‘0)) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
113100, 110, 112syl2anc 582 . . . . . . . . . 10 (((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) ∧ (𝑟 ∈ dom 𝑆𝑎 = (𝑆𝑟))) → ∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
11474, 80, 113reximssdv 3162 . . . . . . . . 9 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
1151, 2, 3, 4, 14, 15, 6efgrelexlema 19733 . . . . . . . . 9 (𝑎𝐿𝑏 ↔ ∃𝑟 ∈ (𝑆 “ {𝑎})∃𝑠 ∈ (𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0))
116114, 115sylibr 233 . . . . . . . 8 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑎𝐿𝑏)
117 vex 3465 . . . . . . . . 9 𝑏 ∈ V
118 vex 3465 . . . . . . . . 9 𝑎 ∈ V
119117, 118elec 8770 . . . . . . . 8 (𝑏 ∈ [𝑎]𝐿𝑎𝐿𝑏)
120116, 119sylibr 233 . . . . . . 7 ((𝑎𝑊𝑏 ∈ ran (𝑇𝑎)) → 𝑏 ∈ [𝑎]𝐿)
121120ex 411 . . . . . 6 (𝑎𝑊 → (𝑏 ∈ ran (𝑇𝑎) → 𝑏 ∈ [𝑎]𝐿))
122121ssrdv 3982 . . . . 5 (𝑎𝑊 → ran (𝑇𝑎) ⊆ [𝑎]𝐿)
123122rgen 3052 . . . 4 𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿
1241fvexi 6910 . . . . . 6 𝑊 ∈ V
125 erex 8749 . . . . . 6 (𝐿 Er 𝑊 → (𝑊 ∈ V → 𝐿 ∈ V))
12671, 124, 125mp2 9 . . . . 5 𝐿 ∈ V
127 ereq1 8732 . . . . . 6 (𝑟 = 𝐿 → (𝑟 Er 𝑊𝐿 Er 𝑊))
128 eceq2 8765 . . . . . . . 8 (𝑟 = 𝐿 → [𝑎]𝑟 = [𝑎]𝐿)
129128sseq2d 4009 . . . . . . 7 (𝑟 = 𝐿 → (ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇𝑎) ⊆ [𝑎]𝐿))
130129ralbidv 3167 . . . . . 6 (𝑟 = 𝐿 → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
131127, 130anbi12d 630 . . . . 5 (𝑟 = 𝐿 → ((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿)))
132126, 131elab 3664 . . . 4 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ↔ (𝐿 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝐿))
13371, 123, 132mpbir2an 709 . . 3 𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
134 intss1 4967 . . 3 (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿)
135133, 134ax-mp 5 . 2 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿
1365, 135eqsstri 4011 1 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wtru 1534  wcel 2098  {cab 2702  wne 2929  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  cdif 3941  wss 3944  c0 4322  {csn 4630  cop 4636  cotp 4638   cint 4950   ciun 4997   class class class wbr 5149  {copab 5211  cmpt 5232   I cid 5575   × cxp 5676  ccnv 5677  dom cdm 5678  ran crn 5679  cima 5681  Rel wrel 5683   Fn wfn 6544  wf 6545  ontowfo 6547  cfv 6549  (class class class)co 7419  cmpo 7421  1oc1o 8480  2oc2o 8481   Er wer 8722  [cec 8723  0cc0 11145  1c1 11146  cmin 11481  cn 12250  ...cfz 13524  ..^cfzo 13667  chash 14333  Word cword 14508   ++ cconcat 14564  ⟨“cs1 14589   splice csplice 14743  ⟨“cs2 14836   ~FG cefg 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-ec 8727  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-hash 14334  df-word 14509  df-concat 14565  df-s1 14590  df-substr 14635  df-pfx 14665  df-splice 14744  df-s2 14843  df-efg 19693
This theorem is referenced by:  efgrelex  19735
  Copyright terms: Public domain W3C validator