| Step | Hyp | Ref
| Expression |
| 1 | | efgval.w |
. . 3
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
| 2 | | efgval.r |
. . 3
⊢ ∼ = (
~FG ‘𝐼) |
| 3 | | efgval2.m |
. . 3
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| 4 | | efgval2.t |
. . 3
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| 5 | 1, 2, 3, 4 | efgval2 19710 |
. 2
⊢ ∼ =
∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
| 6 | | efgrelexlem.1 |
. . . . . . . 8
⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ∃𝑐 ∈ (◡𝑆 “ {𝑖})∃𝑑 ∈ (◡𝑆 “ {𝑗})(𝑐‘0) = (𝑑‘0)} |
| 7 | 6 | relopabiv 5804 |
. . . . . . 7
⊢ Rel 𝐿 |
| 8 | 7 | a1i 11 |
. . . . . 6
⊢ (⊤
→ Rel 𝐿) |
| 9 | | simpr 484 |
. . . . . . 7
⊢
((⊤ ∧ 𝑓𝐿𝑔) → 𝑓𝐿𝑔) |
| 10 | | eqcom 2743 |
. . . . . . . . . 10
⊢ ((𝑎‘0) = (𝑏‘0) ↔ (𝑏‘0) = (𝑎‘0)) |
| 11 | 10 | 2rexbii 3117 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0)) |
| 12 | | rexcom 3275 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑏‘0) = (𝑎‘0) ↔ ∃𝑏 ∈ (◡𝑆 “ {𝑔})∃𝑎 ∈ (◡𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0)) |
| 13 | 11, 12 | bitri 275 |
. . . . . . . 8
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑏 ∈ (◡𝑆 “ {𝑔})∃𝑎 ∈ (◡𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0)) |
| 14 | | efgred.d |
. . . . . . . . 9
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| 15 | | efgred.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| 16 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19735 |
. . . . . . . 8
⊢ (𝑓𝐿𝑔 ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0)) |
| 17 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19735 |
. . . . . . . 8
⊢ (𝑔𝐿𝑓 ↔ ∃𝑏 ∈ (◡𝑆 “ {𝑔})∃𝑎 ∈ (◡𝑆 “ {𝑓})(𝑏‘0) = (𝑎‘0)) |
| 18 | 13, 16, 17 | 3bitr4i 303 |
. . . . . . 7
⊢ (𝑓𝐿𝑔 ↔ 𝑔𝐿𝑓) |
| 19 | 9, 18 | sylib 218 |
. . . . . 6
⊢
((⊤ ∧ 𝑓𝐿𝑔) → 𝑔𝐿𝑓) |
| 20 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19735 |
. . . . . . . . 9
⊢ (𝑔𝐿ℎ ↔ ∃𝑟 ∈ (◡𝑆 “ {𝑔})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) |
| 21 | | reeanv 3217 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑟 ∈ (◡𝑆 “ {𝑔})(∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) ↔ (∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (◡𝑆 “ {𝑔})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0))) |
| 22 | 1, 2, 3, 4, 14, 15 | efgsfo 19725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑆:dom 𝑆–onto→𝑊 |
| 23 | | fofn 6797 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆:dom 𝑆–onto→𝑊 → 𝑆 Fn dom 𝑆) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑆 Fn dom 𝑆 |
| 25 | | fniniseg 7055 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 Fn dom 𝑆 → (𝑟 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑔))) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑔)) |
| 27 | | fniniseg 7055 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 Fn dom 𝑆 → (𝑏 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑏) = 𝑔))) |
| 28 | 24, 27 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ (◡𝑆 “ {𝑔}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑏) = 𝑔)) |
| 29 | | eqtr3 2758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆‘𝑟) = 𝑔 ∧ (𝑆‘𝑏) = 𝑔) → (𝑆‘𝑟) = (𝑆‘𝑏)) |
| 30 | 1, 2, 3, 4, 14, 15 | efgred 19734 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = (𝑆‘𝑏)) → (𝑟‘0) = (𝑏‘0)) |
| 31 | 30 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = (𝑆‘𝑏)) → (𝑏‘0) = (𝑟‘0)) |
| 32 | 31 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆) ∧ (𝑆‘𝑟) = (𝑆‘𝑏)) → (𝑏‘0) = (𝑟‘0)) |
| 33 | 29, 32 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆) ∧ ((𝑆‘𝑟) = 𝑔 ∧ (𝑆‘𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0)) |
| 34 | 33 | an4s 660 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑔) ∧ (𝑏 ∈ dom 𝑆 ∧ (𝑆‘𝑏) = 𝑔)) → (𝑏‘0) = (𝑟‘0)) |
| 35 | 26, 28, 34 | syl2anb 598 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → (𝑏‘0) = (𝑟‘0)) |
| 36 | | eqeq2 2748 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑟‘0) = (𝑠‘0) → ((𝑏‘0) = (𝑟‘0) ↔ (𝑏‘0) = (𝑠‘0))) |
| 37 | 35, 36 | syl5ibcom 245 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → ((𝑟‘0) = (𝑠‘0) → (𝑏‘0) = (𝑠‘0))) |
| 38 | 37 | reximdv 3156 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑏‘0) = (𝑠‘0))) |
| 39 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎‘0) = (𝑏‘0) → ((𝑎‘0) = (𝑠‘0) ↔ (𝑏‘0) = (𝑠‘0))) |
| 40 | 39 | rexbidv 3165 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0) ↔ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑏‘0) = (𝑠‘0))) |
| 41 | 40 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎‘0) = (𝑏‘0) → ((∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) ↔ (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑏‘0) = (𝑠‘0)))) |
| 42 | 38, 41 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ (◡𝑆 “ {𝑔}) ∧ 𝑏 ∈ (◡𝑆 “ {𝑔})) → ((𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)))) |
| 43 | 42 | rexlimdva 3142 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ (◡𝑆 “ {𝑔}) → (∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) → (∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)))) |
| 44 | 43 | impd 410 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ (◡𝑆 “ {𝑔}) → ((∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0))) |
| 45 | 44 | rexlimiv 3135 |
. . . . . . . . . . 11
⊢
(∃𝑟 ∈
(◡𝑆 “ {𝑔})(∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
| 46 | 45 | reximi 3075 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑟 ∈ (◡𝑆 “ {𝑔})(∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
| 47 | 21, 46 | sylbir 235 |
. . . . . . . . 9
⊢
((∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑔})(𝑎‘0) = (𝑏‘0) ∧ ∃𝑟 ∈ (◡𝑆 “ {𝑔})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑟‘0) = (𝑠‘0)) → ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
| 48 | 16, 20, 47 | syl2anb 598 |
. . . . . . . 8
⊢ ((𝑓𝐿𝑔 ∧ 𝑔𝐿ℎ) → ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
| 49 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19735 |
. . . . . . . 8
⊢ (𝑓𝐿ℎ ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑠 ∈ (◡𝑆 “ {ℎ})(𝑎‘0) = (𝑠‘0)) |
| 50 | 48, 49 | sylibr 234 |
. . . . . . 7
⊢ ((𝑓𝐿𝑔 ∧ 𝑔𝐿ℎ) → 𝑓𝐿ℎ) |
| 51 | 50 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ (𝑓𝐿𝑔 ∧ 𝑔𝐿ℎ)) → 𝑓𝐿ℎ) |
| 52 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑎‘0) = (𝑎‘0) |
| 53 | | fveq1 6880 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑎 → (𝑏‘0) = (𝑎‘0)) |
| 54 | 53 | rspceeqv 3629 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ (◡𝑆 “ {𝑓}) ∧ (𝑎‘0) = (𝑎‘0)) → ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) |
| 55 | 52, 54 | mpan2 691 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (◡𝑆 “ {𝑓}) → ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) |
| 56 | 55 | pm4.71i 559 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (◡𝑆 “ {𝑓}) ↔ (𝑎 ∈ (◡𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0))) |
| 57 | | fniniseg 7055 |
. . . . . . . . . . 11
⊢ (𝑆 Fn dom 𝑆 → (𝑎 ∈ (◡𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆‘𝑎) = 𝑓))) |
| 58 | 24, 57 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (◡𝑆 “ {𝑓}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆‘𝑎) = 𝑓)) |
| 59 | 56, 58 | bitr3i 277 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (◡𝑆 “ {𝑓}) ∧ ∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆‘𝑎) = 𝑓)) |
| 60 | 59 | rexbii2 3080 |
. . . . . . . 8
⊢
(∃𝑎 ∈
(◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0) ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓) |
| 61 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19735 |
. . . . . . . 8
⊢ (𝑓𝐿𝑓 ↔ ∃𝑎 ∈ (◡𝑆 “ {𝑓})∃𝑏 ∈ (◡𝑆 “ {𝑓})(𝑎‘0) = (𝑏‘0)) |
| 62 | | forn 6798 |
. . . . . . . . . . 11
⊢ (𝑆:dom 𝑆–onto→𝑊 → ran 𝑆 = 𝑊) |
| 63 | 22, 62 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran 𝑆 = 𝑊 |
| 64 | 63 | eleq2i 2827 |
. . . . . . . . 9
⊢ (𝑓 ∈ ran 𝑆 ↔ 𝑓 ∈ 𝑊) |
| 65 | | fvelrnb 6944 |
. . . . . . . . . 10
⊢ (𝑆 Fn dom 𝑆 → (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓)) |
| 66 | 24, 65 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑓 ∈ ran 𝑆 ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓) |
| 67 | 64, 66 | bitr3i 277 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝑊 ↔ ∃𝑎 ∈ dom 𝑆(𝑆‘𝑎) = 𝑓) |
| 68 | 60, 61, 67 | 3bitr4ri 304 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑊 ↔ 𝑓𝐿𝑓) |
| 69 | 68 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑓 ∈ 𝑊 ↔ 𝑓𝐿𝑓)) |
| 70 | 8, 19, 51, 69 | iserd 8750 |
. . . . 5
⊢ (⊤
→ 𝐿 Er 𝑊) |
| 71 | 70 | mptru 1547 |
. . . 4
⊢ 𝐿 Er 𝑊 |
| 72 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑎 ∈ 𝑊) |
| 73 | | foelrn 7102 |
. . . . . . . . . . 11
⊢ ((𝑆:dom 𝑆–onto→𝑊 ∧ 𝑎 ∈ 𝑊) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆‘𝑟)) |
| 74 | 22, 72, 73 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → ∃𝑟 ∈ dom 𝑆 𝑎 = (𝑆‘𝑟)) |
| 75 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ dom 𝑆) |
| 76 | | simprr 772 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑎 = (𝑆‘𝑟)) |
| 77 | 76 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑆‘𝑟) = 𝑎) |
| 78 | | fniniseg 7055 |
. . . . . . . . . . . 12
⊢ (𝑆 Fn dom 𝑆 → (𝑟 ∈ (◡𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑎))) |
| 79 | 24, 78 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ (◡𝑆 “ {𝑎}) ↔ (𝑟 ∈ dom 𝑆 ∧ (𝑆‘𝑟) = 𝑎)) |
| 80 | 75, 77, 79 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ (◡𝑆 “ {𝑎})) |
| 81 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑏 ∈ ran (𝑇‘𝑎)) |
| 82 | 76 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑇‘𝑎) = (𝑇‘(𝑆‘𝑟))) |
| 83 | 82 | rneqd 5923 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → ran (𝑇‘𝑎) = ran (𝑇‘(𝑆‘𝑟))) |
| 84 | 81, 83 | eleqtrd 2837 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑏 ∈ ran (𝑇‘(𝑆‘𝑟))) |
| 85 | 1, 2, 3, 4, 14, 15 | efgsp1 19723 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ ran (𝑇‘(𝑆‘𝑟))) → (𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆) |
| 86 | 75, 84, 85 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆) |
| 87 | 1, 2, 3, 4, 14, 15 | efgsdm 19716 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ dom 𝑆 ↔ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑟‘0) ∈ 𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘𝑟))(𝑟‘𝑖) ∈ ran (𝑇‘(𝑟‘(𝑖 − 1))))) |
| 88 | 87 | simp1bi 1145 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ dom 𝑆 → 𝑟 ∈ (Word 𝑊 ∖ {∅})) |
| 89 | 88 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ (Word 𝑊 ∖ {∅})) |
| 90 | 89 | eldifad 3943 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑟 ∈ Word 𝑊) |
| 91 | 1, 2, 3, 4 | efgtf 19708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ 𝑊 → ((𝑇‘𝑎) = (𝑓 ∈ (0...(♯‘𝑎)), 𝑔 ∈ (𝐼 × 2o) ↦ (𝑎 splice 〈𝑓, 𝑓, 〈“𝑔(𝑀‘𝑔)”〉〉)) ∧ (𝑇‘𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊)) |
| 92 | 91 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ 𝑊 → (𝑇‘𝑎):((0...(♯‘𝑎)) × (𝐼 × 2o))⟶𝑊) |
| 93 | 92 | frnd 6719 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝑊 → ran (𝑇‘𝑎) ⊆ 𝑊) |
| 94 | 93 | sselda 3963 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑏 ∈ 𝑊) |
| 95 | 94 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 𝑏 ∈ 𝑊) |
| 96 | 1, 2, 3, 4, 14, 15 | efgsval2 19719 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ Word 𝑊 ∧ 𝑏 ∈ 𝑊 ∧ (𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆) → (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏) |
| 97 | 90, 95, 86, 96 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏) |
| 98 | | fniniseg 7055 |
. . . . . . . . . . . . 13
⊢ (𝑆 Fn dom 𝑆 → ((𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏}) ↔ ((𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏))) |
| 99 | 24, 98 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏}) ↔ ((𝑟 ++ 〈“𝑏”〉) ∈ dom 𝑆 ∧ (𝑆‘(𝑟 ++ 〈“𝑏”〉)) = 𝑏)) |
| 100 | 86, 97, 99 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏})) |
| 101 | 95 | s1cld 14626 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 〈“𝑏”〉 ∈ Word 𝑊) |
| 102 | | eldifsn 4767 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅)) |
| 103 | | lennncl 14557 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅) → (♯‘𝑟) ∈
ℕ) |
| 104 | 102, 103 | sylbi 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ (Word 𝑊 ∖ {∅}) →
(♯‘𝑟) ∈
ℕ) |
| 105 | 89, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (♯‘𝑟) ∈ ℕ) |
| 106 | | lbfzo0 13721 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(0..^(♯‘𝑟))
↔ (♯‘𝑟)
∈ ℕ) |
| 107 | 105, 106 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → 0 ∈ (0..^(♯‘𝑟))) |
| 108 | | ccatval1 14600 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ Word 𝑊 ∧ 〈“𝑏”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝑟))) → ((𝑟 ++ 〈“𝑏”〉)‘0) = (𝑟‘0)) |
| 109 | 90, 101, 107, 108 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → ((𝑟 ++ 〈“𝑏”〉)‘0) = (𝑟‘0)) |
| 110 | 109 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → (𝑟‘0) = ((𝑟 ++ 〈“𝑏”〉)‘0)) |
| 111 | | fveq1 6880 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑟 ++ 〈“𝑏”〉) → (𝑠‘0) = ((𝑟 ++ 〈“𝑏”〉)‘0)) |
| 112 | 111 | rspceeqv 3629 |
. . . . . . . . . . 11
⊢ (((𝑟 ++ 〈“𝑏”〉) ∈ (◡𝑆 “ {𝑏}) ∧ (𝑟‘0) = ((𝑟 ++ 〈“𝑏”〉)‘0)) → ∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
| 113 | 100, 110,
112 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) ∧ (𝑟 ∈ dom 𝑆 ∧ 𝑎 = (𝑆‘𝑟))) → ∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
| 114 | 74, 80, 113 | reximssdv 3159 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → ∃𝑟 ∈ (◡𝑆 “ {𝑎})∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
| 115 | 1, 2, 3, 4, 14, 15, 6 | efgrelexlema 19735 |
. . . . . . . . 9
⊢ (𝑎𝐿𝑏 ↔ ∃𝑟 ∈ (◡𝑆 “ {𝑎})∃𝑠 ∈ (◡𝑆 “ {𝑏})(𝑟‘0) = (𝑠‘0)) |
| 116 | 114, 115 | sylibr 234 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑎𝐿𝑏) |
| 117 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 118 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
| 119 | 117, 118 | elec 8770 |
. . . . . . . 8
⊢ (𝑏 ∈ [𝑎]𝐿 ↔ 𝑎𝐿𝑏) |
| 120 | 116, 119 | sylibr 234 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran (𝑇‘𝑎)) → 𝑏 ∈ [𝑎]𝐿) |
| 121 | 120 | ex 412 |
. . . . . 6
⊢ (𝑎 ∈ 𝑊 → (𝑏 ∈ ran (𝑇‘𝑎) → 𝑏 ∈ [𝑎]𝐿)) |
| 122 | 121 | ssrdv 3969 |
. . . . 5
⊢ (𝑎 ∈ 𝑊 → ran (𝑇‘𝑎) ⊆ [𝑎]𝐿) |
| 123 | 122 | rgen 3054 |
. . . 4
⊢
∀𝑎 ∈
𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿 |
| 124 | 1 | fvexi 6895 |
. . . . . 6
⊢ 𝑊 ∈ V |
| 125 | | erex 8748 |
. . . . . 6
⊢ (𝐿 Er 𝑊 → (𝑊 ∈ V → 𝐿 ∈ V)) |
| 126 | 71, 124, 125 | mp2 9 |
. . . . 5
⊢ 𝐿 ∈ V |
| 127 | | ereq1 8731 |
. . . . . 6
⊢ (𝑟 = 𝐿 → (𝑟 Er 𝑊 ↔ 𝐿 Er 𝑊)) |
| 128 | | eceq2 8765 |
. . . . . . . 8
⊢ (𝑟 = 𝐿 → [𝑎]𝑟 = [𝑎]𝐿) |
| 129 | 128 | sseq2d 3996 |
. . . . . . 7
⊢ (𝑟 = 𝐿 → (ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇‘𝑎) ⊆ [𝑎]𝐿)) |
| 130 | 129 | ralbidv 3164 |
. . . . . 6
⊢ (𝑟 = 𝐿 → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿)) |
| 131 | 127, 130 | anbi12d 632 |
. . . . 5
⊢ (𝑟 = 𝐿 → ((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) ↔ (𝐿 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿))) |
| 132 | 126, 131 | elab 3663 |
. . . 4
⊢ (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ↔ (𝐿 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝐿)) |
| 133 | 71, 123, 132 | mpbir2an 711 |
. . 3
⊢ 𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
| 134 | | intss1 4944 |
. . 3
⊢ (𝐿 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} → ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿) |
| 135 | 133, 134 | ax-mp 5 |
. 2
⊢ ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ⊆ 𝐿 |
| 136 | 5, 135 | eqsstri 4010 |
1
⊢ ∼
⊆ 𝐿 |