| Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | ||
| Mirrors > Home > MPE Home > Th. List > tz7.2 | Structured version Visualization version GIF version | ||
| Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, except that the Axiom of Regularity is not required due to the antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.) | 
| Ref | Expression | 
|---|---|
| tz7.2 | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trss 5269 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 2 | efrirr 5664 | . . . . 5 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | eleq1 2828 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝐵 = 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) | 
| 5 | 2, 4 | syl5ibrcom 247 | . . . 4 ⊢ ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵 ∈ 𝐴)) | 
| 6 | 5 | necon2ad 2954 | . . 3 ⊢ ( E Fr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ≠ 𝐴)) | 
| 7 | 1, 6 | anim12ii 618 | . 2 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵 ∈ 𝐴 → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴))) | 
| 8 | 7 | 3impia 1117 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3950 Tr wtr 5258 E cep 5582 Fr wfr 5633 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-fr 5636 | 
| This theorem is referenced by: tz7.7 6409 trelpss 44479 | 
| Copyright terms: Public domain | W3C validator |