![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.2 | Structured version Visualization version GIF version |
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, except that the Axiom of Regularity is not required due to the antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.) |
Ref | Expression |
---|---|
tz7.2 | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trss 5277 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
2 | efrirr 5658 | . . . . 5 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | eleq1 2822 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝐵 = 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
5 | 2, 4 | syl5ibrcom 246 | . . . 4 ⊢ ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵 ∈ 𝐴)) |
6 | 5 | necon2ad 2956 | . . 3 ⊢ ( E Fr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ≠ 𝐴)) |
7 | 1, 6 | anim12ii 619 | . 2 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵 ∈ 𝐴 → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴))) |
8 | 7 | 3impia 1118 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ⊆ wss 3949 Tr wtr 5266 E cep 5580 Fr wfr 5629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-fr 5632 |
This theorem is referenced by: tz7.7 6391 trelpss 43214 |
Copyright terms: Public domain | W3C validator |