![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.2 | Structured version Visualization version GIF version |
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.) |
Ref | Expression |
---|---|
tz7.2 | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trss 4958 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
2 | efrirr 5297 | . . . . 5 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | eleq1 2870 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
4 | 3 | notbid 310 | . . . . 5 ⊢ (𝐵 = 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
5 | 2, 4 | syl5ibrcom 239 | . . . 4 ⊢ ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵 ∈ 𝐴)) |
6 | 5 | necon2ad 2990 | . . 3 ⊢ ( E Fr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ≠ 𝐴)) |
7 | 1, 6 | anim12ii 612 | . 2 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵 ∈ 𝐴 → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴))) |
8 | 7 | 3impia 1146 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2975 ⊆ wss 3773 Tr wtr 4949 E cep 5228 Fr wfr 5272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pr 5101 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-br 4848 df-opab 4910 df-tr 4950 df-eprel 5229 df-fr 5275 |
This theorem is referenced by: tz7.7 5971 trelpss 39443 |
Copyright terms: Public domain | W3C validator |