MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.2 Structured version   Visualization version   GIF version

Theorem tz7.2 5510
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, except that the Axiom of Regularity is not required due to the antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 5146 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
2 efrirr 5507 . . . . 5 ( E Fr 𝐴 → ¬ 𝐴𝐴)
3 eleq1 2820 . . . . . 6 (𝐵 = 𝐴 → (𝐵𝐴𝐴𝐴))
43notbid 321 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐵𝐴 ↔ ¬ 𝐴𝐴))
52, 4syl5ibrcom 250 . . . 4 ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵𝐴))
65necon2ad 2949 . . 3 ( E Fr 𝐴 → (𝐵𝐴𝐵𝐴))
71, 6anim12ii 621 . 2 ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
873impia 1118 1 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wss 3844  Tr wtr 5137   E cep 5434   Fr wfr 5481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-11 2161  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-tr 5138  df-eprel 5435  df-fr 5484
This theorem is referenced by:  tz7.7  6199  trelpss  41603
  Copyright terms: Public domain W3C validator