MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.2 Structured version   Visualization version   GIF version

Theorem tz7.2 5538
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, except that the Axiom of Regularity is not required due to the antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 5178 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
2 efrirr 5535 . . . . 5 ( E Fr 𝐴 → ¬ 𝐴𝐴)
3 eleq1 2905 . . . . . 6 (𝐵 = 𝐴 → (𝐵𝐴𝐴𝐴))
43notbid 319 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐵𝐴 ↔ ¬ 𝐴𝐴))
52, 4syl5ibrcom 248 . . . 4 ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵𝐴))
65necon2ad 3036 . . 3 ( E Fr 𝐴 → (𝐵𝐴𝐵𝐴))
71, 6anim12ii 617 . 2 ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
873impia 1111 1 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wss 3940  Tr wtr 5169   E cep 5463   Fr wfr 5510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-tr 5170  df-eprel 5464  df-fr 5513
This theorem is referenced by:  tz7.7  6216  trelpss  40671
  Copyright terms: Public domain W3C validator