| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.2 | Structured version Visualization version GIF version | ||
| Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, except that the Axiom of Regularity is not required due to the antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| tz7.2 | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trss 5206 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 2 | efrirr 5594 | . . . . 5 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | eleq1 2819 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝐵 = 𝐴 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
| 5 | 2, 4 | syl5ibrcom 247 | . . . 4 ⊢ ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵 ∈ 𝐴)) |
| 6 | 5 | necon2ad 2943 | . . 3 ⊢ ( E Fr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ≠ 𝐴)) |
| 7 | 1, 6 | anim12ii 618 | . 2 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵 ∈ 𝐴 → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴))) |
| 8 | 7 | 3impia 1117 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 Tr wtr 5196 E cep 5513 Fr wfr 5564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-fr 5567 |
| This theorem is referenced by: tz7.7 6332 trelpss 44557 |
| Copyright terms: Public domain | W3C validator |