![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsdomel | Structured version Visualization version GIF version |
Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
nnsdomel | β’ ((π΄ β Ο β§ π΅ β Ο) β (π΄ β π΅ β π΄ βΊ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardnn 9957 | . . 3 β’ (π΄ β Ο β (cardβπ΄) = π΄) | |
2 | cardnn 9957 | . . 3 β’ (π΅ β Ο β (cardβπ΅) = π΅) | |
3 | eleq12 2823 | . . 3 β’ (((cardβπ΄) = π΄ β§ (cardβπ΅) = π΅) β ((cardβπ΄) β (cardβπ΅) β π΄ β π΅)) | |
4 | 1, 2, 3 | syl2an 596 | . 2 β’ ((π΄ β Ο β§ π΅ β Ο) β ((cardβπ΄) β (cardβπ΅) β π΄ β π΅)) |
5 | nnon 7860 | . . . 4 β’ (π΄ β Ο β π΄ β On) | |
6 | onenon 9943 | . . . 4 β’ (π΄ β On β π΄ β dom card) | |
7 | 5, 6 | syl 17 | . . 3 β’ (π΄ β Ο β π΄ β dom card) |
8 | nnon 7860 | . . . 4 β’ (π΅ β Ο β π΅ β On) | |
9 | onenon 9943 | . . . 4 β’ (π΅ β On β π΅ β dom card) | |
10 | 8, 9 | syl 17 | . . 3 β’ (π΅ β Ο β π΅ β dom card) |
11 | cardsdom2 9982 | . . 3 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΊ π΅)) | |
12 | 7, 10, 11 | syl2an 596 | . 2 β’ ((π΄ β Ο β§ π΅ β Ο) β ((cardβπ΄) β (cardβπ΅) β π΄ βΊ π΅)) |
13 | 4, 12 | bitr3d 280 | 1 β’ ((π΄ β Ο β§ π΅ β Ο) β (π΄ β π΅ β π΄ βΊ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5148 dom cdm 5676 Oncon0 6364 βcfv 6543 Οcom 7854 βΊ csdm 8937 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 |
This theorem is referenced by: fin23lem27 10322 |
Copyright terms: Public domain | W3C validator |