MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomel Structured version   Visualization version   GIF version

Theorem nnsdomel 9919
Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
nnsdomel ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nnsdomel
StepHypRef Expression
1 cardnn 9892 . . 3 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
2 cardnn 9892 . . 3 (𝐵 ∈ ω → (card‘𝐵) = 𝐵)
3 eleq12 2818 . . 3 (((card‘𝐴) = 𝐴 ∧ (card‘𝐵) = 𝐵) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
5 nnon 7828 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
6 onenon 9878 . . . 4 (𝐴 ∈ On → 𝐴 ∈ dom card)
75, 6syl 17 . . 3 (𝐴 ∈ ω → 𝐴 ∈ dom card)
8 nnon 7828 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ On)
9 onenon 9878 . . . 4 (𝐵 ∈ On → 𝐵 ∈ dom card)
108, 9syl 17 . . 3 (𝐵 ∈ ω → 𝐵 ∈ dom card)
11 cardsdom2 9917 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
127, 10, 11syl2an 596 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
134, 12bitr3d 281 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  dom cdm 5631  Oncon0 6320  cfv 6499  ωcom 7822  csdm 8894  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868
This theorem is referenced by:  fin23lem27  10257
  Copyright terms: Public domain W3C validator