| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsdomel | Structured version Visualization version GIF version | ||
| Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnsdomel | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardnn 9848 | . . 3 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) | |
| 2 | cardnn 9848 | . . 3 ⊢ (𝐵 ∈ ω → (card‘𝐵) = 𝐵) | |
| 3 | eleq12 2819 | . . 3 ⊢ (((card‘𝐴) = 𝐴 ∧ (card‘𝐵) = 𝐵) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ∈ 𝐵)) |
| 5 | nnon 7797 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 6 | onenon 9834 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ dom card) |
| 8 | nnon 7797 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
| 9 | onenon 9834 | . . . 4 ⊢ (𝐵 ∈ On → 𝐵 ∈ dom card) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐵 ∈ ω → 𝐵 ∈ dom card) |
| 11 | cardsdom2 9873 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) | |
| 12 | 7, 10, 11 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) |
| 13 | 4, 12 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 dom cdm 5614 Oncon0 6302 ‘cfv 6477 ωcom 7791 ≺ csdm 8863 cardccrd 9820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-om 7792 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 |
| This theorem is referenced by: fin23lem27 10211 |
| Copyright terms: Public domain | W3C validator |