Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnsdomel | Structured version Visualization version GIF version |
Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
nnsdomel | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardnn 9652 | . . 3 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) | |
2 | cardnn 9652 | . . 3 ⊢ (𝐵 ∈ ω → (card‘𝐵) = 𝐵) | |
3 | eleq12 2828 | . . 3 ⊢ (((card‘𝐴) = 𝐴 ∧ (card‘𝐵) = 𝐵) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ∈ 𝐵)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ∈ 𝐵)) |
5 | nnon 7693 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
6 | onenon 9638 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ dom card) |
8 | nnon 7693 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
9 | onenon 9638 | . . . 4 ⊢ (𝐵 ∈ On → 𝐵 ∈ dom card) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐵 ∈ ω → 𝐵 ∈ dom card) |
11 | cardsdom2 9677 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) | |
12 | 7, 10, 11 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) |
13 | 4, 12 | bitr3d 280 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 dom cdm 5580 Oncon0 6251 ‘cfv 6418 ωcom 7687 ≺ csdm 8690 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 |
This theorem is referenced by: fin23lem27 10015 |
Copyright terms: Public domain | W3C validator |