MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomel Structured version   Visualization version   GIF version

Theorem nnsdomel 9889
Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
nnsdomel ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nnsdomel
StepHypRef Expression
1 cardnn 9862 . . 3 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
2 cardnn 9862 . . 3 (𝐵 ∈ ω → (card‘𝐵) = 𝐵)
3 eleq12 2821 . . 3 (((card‘𝐴) = 𝐴 ∧ (card‘𝐵) = 𝐵) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
5 nnon 7808 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
6 onenon 9848 . . . 4 (𝐴 ∈ On → 𝐴 ∈ dom card)
75, 6syl 17 . . 3 (𝐴 ∈ ω → 𝐴 ∈ dom card)
8 nnon 7808 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ On)
9 onenon 9848 . . . 4 (𝐵 ∈ On → 𝐵 ∈ dom card)
108, 9syl 17 . . 3 (𝐵 ∈ ω → 𝐵 ∈ dom card)
11 cardsdom2 9887 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
127, 10, 11syl2an 596 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
134, 12bitr3d 281 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5093  dom cdm 5619  Oncon0 6312  cfv 6487  ωcom 7802  csdm 8874  cardccrd 9834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-om 7803  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9838
This theorem is referenced by:  fin23lem27  10225
  Copyright terms: Public domain W3C validator