MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapval Structured version   Visualization version   GIF version

Theorem oemapval 9441
Description: Value of the relation 𝑇. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
Assertion
Ref Expression
oemapval (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐹,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑤,𝐺,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapval
StepHypRef Expression
1 oemapval.f . 2 (𝜑𝐹𝑆)
2 oemapval.g . 2 (𝜑𝐺𝑆)
3 fveq1 6773 . . . . . 6 (𝑥 = 𝐹 → (𝑥𝑧) = (𝐹𝑧))
4 fveq1 6773 . . . . . 6 (𝑦 = 𝐺 → (𝑦𝑧) = (𝐺𝑧))
5 eleq12 2828 . . . . . 6 (((𝑥𝑧) = (𝐹𝑧) ∧ (𝑦𝑧) = (𝐺𝑧)) → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝐹𝑧) ∈ (𝐺𝑧)))
63, 4, 5syl2an 596 . . . . 5 ((𝑥 = 𝐹𝑦 = 𝐺) → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝐹𝑧) ∈ (𝐺𝑧)))
7 fveq1 6773 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥𝑤) = (𝐹𝑤))
8 fveq1 6773 . . . . . . . 8 (𝑦 = 𝐺 → (𝑦𝑤) = (𝐺𝑤))
97, 8eqeqan12d 2752 . . . . . . 7 ((𝑥 = 𝐹𝑦 = 𝐺) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝐹𝑤) = (𝐺𝑤)))
109imbi2d 341 . . . . . 6 ((𝑥 = 𝐹𝑦 = 𝐺) → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
1110ralbidv 3112 . . . . 5 ((𝑥 = 𝐹𝑦 = 𝐺) → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
126, 11anbi12d 631 . . . 4 ((𝑥 = 𝐹𝑦 = 𝐺) → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
1312rexbidv 3226 . . 3 ((𝑥 = 𝐹𝑦 = 𝐺) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
14 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
1513, 14brabga 5447 . 2 ((𝐹𝑆𝐺𝑆) → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
161, 2, 15syl2anc 584 1 (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  {copab 5136  dom cdm 5589  Oncon0 6266  cfv 6433  (class class class)co 7275   CNF ccnf 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441
This theorem is referenced by:  oemapvali  9442
  Copyright terms: Public domain W3C validator