| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oemapval | Structured version Visualization version GIF version | ||
| Description: Value of the relation 𝑇. (Contributed by Mario Carneiro, 28-May-2015.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| oemapval | ⊢ (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oemapval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 2 | oemapval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
| 3 | fveq1 6825 | . . . . . 6 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑧) = (𝐹‘𝑧)) | |
| 4 | fveq1 6825 | . . . . . 6 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑧) = (𝐺‘𝑧)) | |
| 5 | eleq12 2818 | . . . . . 6 ⊢ (((𝑥‘𝑧) = (𝐹‘𝑧) ∧ (𝑦‘𝑧) = (𝐺‘𝑧)) → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝐹‘𝑧) ∈ (𝐺‘𝑧))) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝐹‘𝑧) ∈ (𝐺‘𝑧))) |
| 7 | fveq1 6825 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑤) = (𝐹‘𝑤)) | |
| 8 | fveq1 6825 | . . . . . . . 8 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑤) = (𝐺‘𝑤)) | |
| 9 | 7, 8 | eqeqan12d 2743 | . . . . . . 7 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑤) = (𝑦‘𝑤) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) |
| 10 | 9 | imbi2d 340 | . . . . . 6 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
| 11 | 10 | ralbidv 3152 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
| 12 | 6, 11 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
| 13 | 12 | rexbidv 3153 | . . 3 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
| 14 | oemapval.t | . . 3 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
| 15 | 13, 14 | brabga 5481 | . 2 ⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
| 16 | 1, 2, 15 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5095 {copab 5157 dom cdm 5623 Oncon0 6311 ‘cfv 6486 (class class class)co 7353 CNF ccnf 9576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: oemapvali 9599 |
| Copyright terms: Public domain | W3C validator |