Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oemapval | Structured version Visualization version GIF version |
Description: Value of the relation 𝑇. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
Ref | Expression |
---|---|
oemapval | ⊢ (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oemapval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
2 | oemapval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
3 | fveq1 6755 | . . . . . 6 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑧) = (𝐹‘𝑧)) | |
4 | fveq1 6755 | . . . . . 6 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑧) = (𝐺‘𝑧)) | |
5 | eleq12 2828 | . . . . . 6 ⊢ (((𝑥‘𝑧) = (𝐹‘𝑧) ∧ (𝑦‘𝑧) = (𝐺‘𝑧)) → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝐹‘𝑧) ∈ (𝐺‘𝑧))) | |
6 | 3, 4, 5 | syl2an 595 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝐹‘𝑧) ∈ (𝐺‘𝑧))) |
7 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑤) = (𝐹‘𝑤)) | |
8 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑤) = (𝐺‘𝑤)) | |
9 | 7, 8 | eqeqan12d 2752 | . . . . . . 7 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑤) = (𝑦‘𝑤) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) |
10 | 9 | imbi2d 340 | . . . . . 6 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
11 | 10 | ralbidv 3120 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
12 | 6, 11 | anbi12d 630 | . . . 4 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
13 | 12 | rexbidv 3225 | . . 3 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
14 | oemapval.t | . . 3 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
15 | 13, 14 | brabga 5440 | . 2 ⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
16 | 1, 2, 15 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 {copab 5132 dom cdm 5580 Oncon0 6251 ‘cfv 6418 (class class class)co 7255 CNF ccnf 9349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-iota 6376 df-fv 6426 |
This theorem is referenced by: oemapvali 9372 |
Copyright terms: Public domain | W3C validator |