![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oemapval | Structured version Visualization version GIF version |
Description: Value of the relation 𝑇. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
Ref | Expression |
---|---|
oemapval | ⊢ (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oemapval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
2 | oemapval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
3 | fveq1 6896 | . . . . . 6 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑧) = (𝐹‘𝑧)) | |
4 | fveq1 6896 | . . . . . 6 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑧) = (𝐺‘𝑧)) | |
5 | eleq12 2819 | . . . . . 6 ⊢ (((𝑥‘𝑧) = (𝐹‘𝑧) ∧ (𝑦‘𝑧) = (𝐺‘𝑧)) → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝐹‘𝑧) ∈ (𝐺‘𝑧))) | |
6 | 3, 4, 5 | syl2an 595 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝐹‘𝑧) ∈ (𝐺‘𝑧))) |
7 | fveq1 6896 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → (𝑥‘𝑤) = (𝐹‘𝑤)) | |
8 | fveq1 6896 | . . . . . . . 8 ⊢ (𝑦 = 𝐺 → (𝑦‘𝑤) = (𝐺‘𝑤)) | |
9 | 7, 8 | eqeqan12d 2742 | . . . . . . 7 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑥‘𝑤) = (𝑦‘𝑤) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) |
10 | 9 | imbi2d 340 | . . . . . 6 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → ((𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
11 | 10 | ralbidv 3174 | . . . . 5 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
12 | 6, 11 | anbi12d 631 | . . . 4 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
13 | 12 | rexbidv 3175 | . . 3 ⊢ ((𝑥 = 𝐹 ∧ 𝑦 = 𝐺) → (∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
14 | oemapval.t | . . 3 ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
15 | 13, 14 | brabga 5536 | . 2 ⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
16 | 1, 2, 15 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 class class class wbr 5148 {copab 5210 dom cdm 5678 Oncon0 6369 ‘cfv 6548 (class class class)co 7420 CNF ccnf 9684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-iota 6500 df-fv 6556 |
This theorem is referenced by: oemapvali 9707 |
Copyright terms: Public domain | W3C validator |