| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elinisegg | Structured version Visualization version GIF version | ||
| Description: Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten proof. (Revised by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| elinisegg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng1 6038 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶)) | |
| 2 | brcnvg 5822 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵◡𝐴𝐶 ↔ 𝐶𝐴𝐵)) | |
| 3 | 1, 2 | bitrd 279 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {csn 4577 class class class wbr 5092 ◡ccnv 5618 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: eliniseg 6045 elpredgg 6262 |
| Copyright terms: Public domain | W3C validator |