| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrestd | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| elrestd.1 | ⊢ (𝜑 → 𝐽 ∈ 𝑉) |
| elrestd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elrestd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| elrestd.4 | ⊢ 𝐴 = (𝑋 ∩ 𝐵) |
| Ref | Expression |
|---|---|
| elrestd | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrestd.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 2 | elrestd.4 | . . . 4 ⊢ 𝐴 = (𝑋 ∩ 𝐵) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑋 ∩ 𝐵)) |
| 4 | ineq1 4158 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∩ 𝐵) = (𝑋 ∩ 𝐵)) | |
| 5 | 4 | rspceeqv 3595 | . . 3 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 = (𝑋 ∩ 𝐵)) → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 6 | 1, 3, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 7 | elrestd.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑉) | |
| 8 | elrestd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 9 | elrest 17326 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 (class class class)co 7341 ↾t crest 17319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rest 17321 |
| This theorem is referenced by: restuni3 45155 subsaliuncl 46396 subsalsal 46397 sssmf 46776 mbfresmf 46777 smfconst 46787 smflimlem1 46809 smfres 46828 smfco 46840 smfsuplem1 46849 |
| Copyright terms: Public domain | W3C validator |