Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrestd Structured version   Visualization version   GIF version

Theorem elrestd 44099
Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
elrestd.1 (𝜑𝐽𝑉)
elrestd.2 (𝜑𝐵𝑊)
elrestd.3 (𝜑𝑋𝐽)
elrestd.4 𝐴 = (𝑋𝐵)
Assertion
Ref Expression
elrestd (𝜑𝐴 ∈ (𝐽t 𝐵))

Proof of Theorem elrestd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrestd.3 . . 3 (𝜑𝑋𝐽)
2 elrestd.4 . . . 4 𝐴 = (𝑋𝐵)
32a1i 11 . . 3 (𝜑𝐴 = (𝑋𝐵))
4 ineq1 4205 . . . 4 (𝑥 = 𝑋 → (𝑥𝐵) = (𝑋𝐵))
54rspceeqv 3633 . . 3 ((𝑋𝐽𝐴 = (𝑋𝐵)) → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
61, 3, 5syl2anc 583 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
7 elrestd.1 . . 3 (𝜑𝐽𝑉)
8 elrestd.2 . . 3 (𝜑𝐵𝑊)
9 elrest 17378 . . 3 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
107, 8, 9syl2anc 583 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
116, 10mpbird 257 1 (𝜑𝐴 ∈ (𝐽t 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wrex 3069  cin 3947  (class class class)co 7412  t crest 17371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-rest 17373
This theorem is referenced by:  restuni3  44109  subsaliuncl  45373  subsalsal  45374  sssmf  45753  mbfresmf  45754  smfconst  45764  smflimlem1  45786  smfres  45805  smfco  45817  smfsuplem1  45826
  Copyright terms: Public domain W3C validator