Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrestd Structured version   Visualization version   GIF version

Theorem elrestd 45048
Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
elrestd.1 (𝜑𝐽𝑉)
elrestd.2 (𝜑𝐵𝑊)
elrestd.3 (𝜑𝑋𝐽)
elrestd.4 𝐴 = (𝑋𝐵)
Assertion
Ref Expression
elrestd (𝜑𝐴 ∈ (𝐽t 𝐵))

Proof of Theorem elrestd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrestd.3 . . 3 (𝜑𝑋𝐽)
2 elrestd.4 . . . 4 𝐴 = (𝑋𝐵)
32a1i 11 . . 3 (𝜑𝐴 = (𝑋𝐵))
4 ineq1 4221 . . . 4 (𝑥 = 𝑋 → (𝑥𝐵) = (𝑋𝐵))
54rspceeqv 3645 . . 3 ((𝑋𝐽𝐴 = (𝑋𝐵)) → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
61, 3, 5syl2anc 584 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
7 elrestd.1 . . 3 (𝜑𝐽𝑉)
8 elrestd.2 . . 3 (𝜑𝐵𝑊)
9 elrest 17474 . . 3 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
107, 8, 9syl2anc 584 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
116, 10mpbird 257 1 (𝜑𝐴 ∈ (𝐽t 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wrex 3068  cin 3962  (class class class)co 7431  t crest 17467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rest 17469
This theorem is referenced by:  restuni3  45058  subsaliuncl  46314  subsalsal  46315  sssmf  46694  mbfresmf  46695  smfconst  46705  smflimlem1  46727  smfres  46746  smfco  46758  smfsuplem1  46767
  Copyright terms: Public domain W3C validator