| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrestd | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| elrestd.1 | ⊢ (𝜑 → 𝐽 ∈ 𝑉) |
| elrestd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elrestd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| elrestd.4 | ⊢ 𝐴 = (𝑋 ∩ 𝐵) |
| Ref | Expression |
|---|---|
| elrestd | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrestd.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 2 | elrestd.4 | . . . 4 ⊢ 𝐴 = (𝑋 ∩ 𝐵) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑋 ∩ 𝐵)) |
| 4 | ineq1 4193 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∩ 𝐵) = (𝑋 ∩ 𝐵)) | |
| 5 | 4 | rspceeqv 3629 | . . 3 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 = (𝑋 ∩ 𝐵)) → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 6 | 1, 3, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 7 | elrestd.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑉) | |
| 8 | elrestd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 9 | elrest 17446 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∩ cin 3930 (class class class)co 7410 ↾t crest 17439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rest 17441 |
| This theorem is referenced by: restuni3 45122 subsaliuncl 46367 subsalsal 46368 sssmf 46747 mbfresmf 46748 smfconst 46758 smflimlem1 46780 smfres 46799 smfco 46811 smfsuplem1 46820 |
| Copyright terms: Public domain | W3C validator |