![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrestd | Structured version Visualization version GIF version |
Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
elrestd.1 | ⊢ (𝜑 → 𝐽 ∈ 𝑉) |
elrestd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
elrestd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
elrestd.4 | ⊢ 𝐴 = (𝑋 ∩ 𝐵) |
Ref | Expression |
---|---|
elrestd | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrestd.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
2 | elrestd.4 | . . . 4 ⊢ 𝐴 = (𝑋 ∩ 𝐵) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑋 ∩ 𝐵)) |
4 | ineq1 4205 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∩ 𝐵) = (𝑋 ∩ 𝐵)) | |
5 | 4 | rspceeqv 3633 | . . 3 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 = (𝑋 ∩ 𝐵)) → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
6 | 1, 3, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
7 | elrestd.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑉) | |
8 | elrestd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
9 | elrest 17378 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | |
10 | 7, 8, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
11 | 6, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∩ cin 3947 (class class class)co 7412 ↾t crest 17371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-rest 17373 |
This theorem is referenced by: restuni3 44109 subsaliuncl 45373 subsalsal 45374 sssmf 45753 mbfresmf 45754 smfconst 45764 smflimlem1 45786 smfres 45805 smfco 45817 smfsuplem1 45826 |
Copyright terms: Public domain | W3C validator |