| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrestd | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| elrestd.1 | ⊢ (𝜑 → 𝐽 ∈ 𝑉) |
| elrestd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elrestd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| elrestd.4 | ⊢ 𝐴 = (𝑋 ∩ 𝐵) |
| Ref | Expression |
|---|---|
| elrestd | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrestd.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 2 | elrestd.4 | . . . 4 ⊢ 𝐴 = (𝑋 ∩ 𝐵) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑋 ∩ 𝐵)) |
| 4 | ineq1 4162 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∩ 𝐵) = (𝑋 ∩ 𝐵)) | |
| 5 | 4 | rspceeqv 3596 | . . 3 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 = (𝑋 ∩ 𝐵)) → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 6 | 1, 3, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 7 | elrestd.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑉) | |
| 8 | elrestd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 9 | elrest 17338 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| 11 | 6, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∩ cin 3897 (class class class)co 7355 ↾t crest 17331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-rest 17333 |
| This theorem is referenced by: restuni3 45278 subsaliuncl 46518 subsalsal 46519 sssmf 46898 mbfresmf 46899 smfconst 46909 smflimlem1 46931 smfres 46950 smfco 46962 smfsuplem1 46971 |
| Copyright terms: Public domain | W3C validator |