Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrestd Structured version   Visualization version   GIF version

Theorem elrestd 45010
Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
elrestd.1 (𝜑𝐽𝑉)
elrestd.2 (𝜑𝐵𝑊)
elrestd.3 (𝜑𝑋𝐽)
elrestd.4 𝐴 = (𝑋𝐵)
Assertion
Ref Expression
elrestd (𝜑𝐴 ∈ (𝐽t 𝐵))

Proof of Theorem elrestd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrestd.3 . . 3 (𝜑𝑋𝐽)
2 elrestd.4 . . . 4 𝐴 = (𝑋𝐵)
32a1i 11 . . 3 (𝜑𝐴 = (𝑋𝐵))
4 ineq1 4234 . . . 4 (𝑥 = 𝑋 → (𝑥𝐵) = (𝑋𝐵))
54rspceeqv 3658 . . 3 ((𝑋𝐽𝐴 = (𝑋𝐵)) → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
61, 3, 5syl2anc 583 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
7 elrestd.1 . . 3 (𝜑𝐽𝑉)
8 elrestd.2 . . 3 (𝜑𝐵𝑊)
9 elrest 17487 . . 3 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
107, 8, 9syl2anc 583 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
116, 10mpbird 257 1 (𝜑𝐴 ∈ (𝐽t 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  cin 3975  (class class class)co 7448  t crest 17480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rest 17482
This theorem is referenced by:  restuni3  45020  subsaliuncl  46279  subsalsal  46280  sssmf  46659  mbfresmf  46660  smfconst  46670  smflimlem1  46692  smfres  46711  smfco  46723  smfsuplem1  46732
  Copyright terms: Public domain W3C validator