Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrestd Structured version   Visualization version   GIF version

Theorem elrestd 45102
Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
elrestd.1 (𝜑𝐽𝑉)
elrestd.2 (𝜑𝐵𝑊)
elrestd.3 (𝜑𝑋𝐽)
elrestd.4 𝐴 = (𝑋𝐵)
Assertion
Ref Expression
elrestd (𝜑𝐴 ∈ (𝐽t 𝐵))

Proof of Theorem elrestd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrestd.3 . . 3 (𝜑𝑋𝐽)
2 elrestd.4 . . . 4 𝐴 = (𝑋𝐵)
32a1i 11 . . 3 (𝜑𝐴 = (𝑋𝐵))
4 ineq1 4176 . . . 4 (𝑥 = 𝑋 → (𝑥𝐵) = (𝑋𝐵))
54rspceeqv 3611 . . 3 ((𝑋𝐽𝐴 = (𝑋𝐵)) → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
61, 3, 5syl2anc 584 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐵))
7 elrestd.1 . . 3 (𝜑𝐽𝑉)
8 elrestd.2 . . 3 (𝜑𝐵𝑊)
9 elrest 17390 . . 3 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
107, 8, 9syl2anc 584 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
116, 10mpbird 257 1 (𝜑𝐴 ∈ (𝐽t 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  cin 3913  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by:  restuni3  45112  subsaliuncl  46356  subsalsal  46357  sssmf  46736  mbfresmf  46737  smfconst  46747  smflimlem1  46769  smfres  46788  smfco  46800  smfsuplem1  46809
  Copyright terms: Public domain W3C validator