MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredim Structured version   Visualization version   GIF version

Theorem elpredim 6128
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.)
Hypothesis
Ref Expression
elpredim.1 𝑋 ∈ V
Assertion
Ref Expression
elpredim (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)

Proof of Theorem elpredim
StepHypRef Expression
1 df-pred 6116 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 4124 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
3 elpredim.1 . . . . 5 𝑋 ∈ V
4 elimasng 5922 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ (𝑅 “ {𝑋})) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑅))
5 opelcnvg 5715 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ (𝑅 “ {𝑋})) → (⟨𝑋, 𝑌⟩ ∈ 𝑅 ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅))
64, 5bitrd 282 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ (𝑅 “ {𝑋})) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅))
73, 6mpan 689 . . . 4 (𝑌 ∈ (𝑅 “ {𝑋}) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅))
87ibi 270 . . 3 (𝑌 ∈ (𝑅 “ {𝑋}) → ⟨𝑌, 𝑋⟩ ∈ 𝑅)
9 df-br 5031 . . 3 (𝑌𝑅𝑋 ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅)
108, 9sylibr 237 . 2 (𝑌 ∈ (𝑅 “ {𝑋}) → 𝑌𝑅𝑋)
112, 10simplbiim 508 1 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  Vcvv 3441  {csn 4525  cop 4531   class class class wbr 5030  ccnv 5518  cima 5522  Predcpred 6115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116
This theorem is referenced by:  predbrg  6136  preddowncl  6143  trpredrec  33190
  Copyright terms: Public domain W3C validator