MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredim Structured version   Visualization version   GIF version

Theorem elpredim 6154
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.)
Hypothesis
Ref Expression
elpredim.1 𝑋 ∈ V
Assertion
Ref Expression
elpredim (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)

Proof of Theorem elpredim
StepHypRef Expression
1 df-pred 6142 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 4173 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
3 elpredim.1 . . . . 5 𝑋 ∈ V
4 elimasng 5949 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ (𝑅 “ {𝑋})) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑅))
5 opelcnvg 5745 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ (𝑅 “ {𝑋})) → (⟨𝑋, 𝑌⟩ ∈ 𝑅 ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅))
64, 5bitrd 281 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ (𝑅 “ {𝑋})) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅))
73, 6mpan 688 . . . 4 (𝑌 ∈ (𝑅 “ {𝑋}) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅))
87ibi 269 . . 3 (𝑌 ∈ (𝑅 “ {𝑋}) → ⟨𝑌, 𝑋⟩ ∈ 𝑅)
9 df-br 5059 . . 3 (𝑌𝑅𝑋 ↔ ⟨𝑌, 𝑋⟩ ∈ 𝑅)
108, 9sylibr 236 . 2 (𝑌 ∈ (𝑅 “ {𝑋}) → 𝑌𝑅𝑋)
112, 10simplbiim 507 1 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  Vcvv 3494  {csn 4560  cop 4566   class class class wbr 5058  ccnv 5548  cima 5552  Predcpred 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-cnv 5557  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142
This theorem is referenced by:  predbrg  6162  preddowncl  6169  trpredrec  33072
  Copyright terms: Public domain W3C validator