![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
Ref | Expression |
---|---|
iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 5033 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | abrexexg 7951 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
4 | 3 | uniexd 7736 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
6 | 2, 5 | eqeltrd 2832 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∃wrex 3069 Vcvv 3473 ∪ cuni 4908 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-v 3475 df-in 3955 df-ss 3965 df-uni 4909 df-iun 4999 |
This theorem is referenced by: abrexex2g 7955 opabex3d 7956 opabex3rd 7957 opabex3 7958 iunex 7959 xpexgALT 7972 mpoexxg 8066 ixpexg 8922 ixpssmapg 8928 ttrclselem2 9727 iundom 10543 iunctb 10575 wrdexg 14481 cshwsex 17041 imasplusg 17470 imasmulr 17471 imasvsca 17473 imasip 17474 gsum2d2 19890 gsumcom2 19891 dprd2da 19960 ptcls 23440 ptcmplem2 23877 elpwiuncl 32198 aciunf1lem 32320 gsumpart 32643 irngval 33204 esum2dlem 33554 esum2d 33555 esumiun 33556 omssubadd 33763 eulerpartlemgs2 33843 bnj535 34365 bnj546 34371 bnj893 34403 bnj1136 34472 bnj1413 34510 eliunov2 42893 fvmptiunrelexplb0d 42898 fvmptiunrelexplb1d 42900 iunrelexp0 42916 collexd 43479 unirnmapsn 44372 iunmapss 44373 ssmapsn 44374 iunmapsn 44375 sge0iunmptlemfi 45588 sge0iunmpt 45593 smflimlem1 45946 smfliminflem 46005 mpoexxg2 47176 |
Copyright terms: Public domain | W3C validator |