| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| Ref | Expression |
|---|---|
| iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4978 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | abrexexg 7893 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 4 | 3 | uniexd 7675 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 6 | 2, 5 | eqeltrd 2831 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∪ cuni 4856 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-uni 4857 df-iun 4941 |
| This theorem is referenced by: abrexex2g 7896 opabex3d 7897 opabex3rd 7898 opabex3 7899 iunex 7900 xpexgALT 7913 mpoexxg 8007 ixpexg 8846 ixpssmapg 8852 ttrclselem2 9616 iundom 10433 iunctb 10465 wrdexg 14431 cshwsex 17012 imasplusg 17421 imasmulr 17422 imasvsca 17424 imasip 17425 gsum2d2 19886 gsumcom2 19887 dprd2da 19956 ptcls 23531 ptcmplem2 23968 elpwiuncl 32507 aciunf1lem 32644 gsumpart 33037 gsumwrd2dccat 33047 irngval 33698 esum2dlem 34105 esum2d 34106 esumiun 34107 omssubadd 34313 eulerpartlemgs2 34393 bnj535 34902 bnj546 34908 bnj893 34940 bnj1136 35009 bnj1413 35047 tz9.1regs 35130 weiunse 36512 numiunnum 36514 eliunov2 43782 fvmptiunrelexplb0d 43787 fvmptiunrelexplb1d 43789 iunrelexp0 43805 collexd 44360 unirnmapsn 45321 iunmapss 45322 ssmapsn 45323 iunmapsn 45324 sge0iunmptlemfi 46521 sge0iunmpt 46526 smflimlem1 46879 smfliminflem 46938 mpoexxg2 48448 imasubclem1 49215 |
| Copyright terms: Public domain | W3C validator |