![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
Ref | Expression |
---|---|
iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 5033 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | abrexexg 7951 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
4 | 3 | uniexd 7736 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
6 | 2, 5 | eqeltrd 2832 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∃wrex 3069 Vcvv 3473 ∪ cuni 4908 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-v 3475 df-in 3955 df-ss 3965 df-uni 4909 df-iun 4999 |
This theorem is referenced by: abrexex2g 7955 opabex3d 7956 opabex3rd 7957 opabex3 7958 iunex 7959 xpexgALT 7972 mpoexxg 8066 ixpexg 8922 ixpssmapg 8928 ttrclselem2 9727 iundom 10543 iunctb 10575 wrdexg 14481 cshwsex 17041 imasplusg 17470 imasmulr 17471 imasvsca 17473 imasip 17474 gsum2d2 19890 gsumcom2 19891 dprd2da 19960 ptcls 23441 ptcmplem2 23878 elpwiuncl 32200 aciunf1lem 32322 gsumpart 32645 irngval 33206 esum2dlem 33556 esum2d 33557 esumiun 33558 omssubadd 33765 eulerpartlemgs2 33845 bnj535 34367 bnj546 34373 bnj893 34405 bnj1136 34474 bnj1413 34512 eliunov2 42896 fvmptiunrelexplb0d 42901 fvmptiunrelexplb1d 42903 iunrelexp0 42919 collexd 43482 unirnmapsn 44375 iunmapss 44376 ssmapsn 44377 iunmapsn 44378 sge0iunmptlemfi 45591 sge0iunmpt 45596 smflimlem1 45949 smfliminflem 46008 mpoexxg2 47179 |
Copyright terms: Public domain | W3C validator |