![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
Ref | Expression |
---|---|
iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 5033 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | abrexexg 7944 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
4 | 3 | uniexd 7729 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
5 | 4 | adantr 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
6 | 2, 5 | eqeltrd 2834 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ∪ cuni 4908 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-in 3955 df-ss 3965 df-uni 4909 df-iun 4999 |
This theorem is referenced by: abrexex2g 7948 opabex3d 7949 opabex3rd 7950 opabex3 7951 iunex 7952 xpexgALT 7965 mpoexxg 8059 ixpexg 8913 ixpssmapg 8919 ttrclselem2 9718 iundom 10534 iunctb 10566 wrdexg 14471 cshwsex 17031 imasplusg 17460 imasmulr 17461 imasvsca 17463 imasip 17464 gsum2d2 19837 gsumcom2 19838 dprd2da 19907 ptcls 23112 ptcmplem2 23549 elpwiuncl 31753 aciunf1lem 31875 gsumpart 32195 irngval 32738 esum2dlem 33079 esum2d 33080 esumiun 33081 omssubadd 33288 eulerpartlemgs2 33368 bnj535 33890 bnj546 33896 bnj893 33928 bnj1136 33997 bnj1413 34035 eliunov2 42416 fvmptiunrelexplb0d 42421 fvmptiunrelexplb1d 42423 iunrelexp0 42439 collexd 43002 unirnmapsn 43899 iunmapss 43900 ssmapsn 43901 iunmapsn 43902 sge0iunmptlemfi 45116 sge0iunmpt 45121 smflimlem1 45474 smfliminflem 45533 mpoexxg2 46967 |
Copyright terms: Public domain | W3C validator |