MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunexg Structured version   Visualization version   GIF version

Theorem iunexg 7341
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
iunexg ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4708 . . 3 (∀𝑥𝐴 𝐵𝑊 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 473 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 abrexexg 7338 . . . 4 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
4 uniexg 7153 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
53, 4syl 17 . . 3 (𝐴𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
65adantr 472 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
72, 6eqeltrd 2844 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  {cab 2751  wral 3055  wrex 3056  Vcvv 3350   cuni 4594   ciun 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076
This theorem is referenced by:  abrexex2g  7342  opabex3d  7343  opabex3  7344  iunex  7345  xpexgALT  7359  mpt2exxg  7445  ixpexg  8137  ixpssmapg  8143  iundom  9617  iunctb  9649  cshwsex  16083  imasplusg  16445  imasmulr  16446  imasvsca  16448  imasip  16449  gsum2d2  18639  gsumcom2  18640  dprd2da  18708  ptcls  21699  ptcmplem2  22136  elpwiuncl  29743  aciunf1lem  29847  esum2dlem  30536  esum2d  30537  esumiun  30538  omssubadd  30744  eulerpartlemgs2  30824  bnj535  31340  bnj546  31346  bnj893  31378  bnj1136  31445  bnj1413  31483  trpredtr  32105  trpredmintr  32106  trpredrec  32113  eliunov2  38578  fvmptiunrelexplb0d  38583  fvmptiunrelexplb1d  38585  iunrelexp0  38601  unirnmapsn  39983  iunmapss  39984  ssmapsn  39985  iunmapsn  39986  sge0iunmptlemfi  41199  sge0iunmpt  41204  smflimlem1  41551  smfliminflem  41608  mpt2exxg2  42717
  Copyright terms: Public domain W3C validator