MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunexg Structured version   Visualization version   GIF version

Theorem iunexg 8004
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
iunexg ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 5053 . . 3 (∀𝑥𝐴 𝐵𝑊 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 481 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 abrexexg 8001 . . . 4 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
43uniexd 7777 . . 3 (𝐴𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
54adantr 480 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
62, 5eqeltrd 2844 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488   cuni 4931   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-uni 4932  df-iun 5017
This theorem is referenced by:  abrexex2g  8005  opabex3d  8006  opabex3rd  8007  opabex3  8008  iunex  8009  xpexgALT  8022  mpoexxg  8116  ixpexg  8980  ixpssmapg  8986  ttrclselem2  9795  iundom  10611  iunctb  10643  wrdexg  14572  cshwsex  17148  imasplusg  17577  imasmulr  17578  imasvsca  17580  imasip  17581  gsum2d2  20016  gsumcom2  20017  dprd2da  20086  ptcls  23645  ptcmplem2  24082  elpwiuncl  32557  aciunf1lem  32680  gsumpart  33038  irngval  33685  esum2dlem  34056  esum2d  34057  esumiun  34058  omssubadd  34265  eulerpartlemgs2  34345  bnj535  34866  bnj546  34872  bnj893  34904  bnj1136  34973  bnj1413  35011  weiunse  36434  numiunnum  36436  eliunov2  43641  fvmptiunrelexplb0d  43646  fvmptiunrelexplb1d  43648  iunrelexp0  43664  collexd  44226  unirnmapsn  45121  iunmapss  45122  ssmapsn  45123  iunmapsn  45124  sge0iunmptlemfi  46334  sge0iunmpt  46339  smflimlem1  46692  smfliminflem  46751  mpoexxg2  48062
  Copyright terms: Public domain W3C validator