| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| Ref | Expression |
|---|---|
| iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4980 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | abrexexg 7896 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 4 | 3 | uniexd 7678 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 6 | 2, 5 | eqeltrd 2828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ∪ cuni 4858 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3438 df-ss 3920 df-uni 4859 df-iun 4943 |
| This theorem is referenced by: abrexex2g 7899 opabex3d 7900 opabex3rd 7901 opabex3 7902 iunex 7903 xpexgALT 7916 mpoexxg 8010 ixpexg 8849 ixpssmapg 8855 ttrclselem2 9622 iundom 10436 iunctb 10468 wrdexg 14431 cshwsex 17012 imasplusg 17421 imasmulr 17422 imasvsca 17424 imasip 17425 gsum2d2 19853 gsumcom2 19854 dprd2da 19923 ptcls 23501 ptcmplem2 23938 elpwiuncl 32471 aciunf1lem 32606 gsumpart 33011 gsumwrd2dccat 33021 irngval 33658 esum2dlem 34065 esum2d 34066 esumiun 34067 omssubadd 34274 eulerpartlemgs2 34354 bnj535 34863 bnj546 34869 bnj893 34901 bnj1136 34970 bnj1413 35008 tz9.1regs 35073 weiunse 36452 numiunnum 36454 eliunov2 43662 fvmptiunrelexplb0d 43667 fvmptiunrelexplb1d 43669 iunrelexp0 43685 collexd 44240 unirnmapsn 45202 iunmapss 45203 ssmapsn 45204 iunmapsn 45205 sge0iunmptlemfi 46404 sge0iunmpt 46409 smflimlem1 46762 smfliminflem 46821 mpoexxg2 48332 imasubclem1 49099 |
| Copyright terms: Public domain | W3C validator |