| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| Ref | Expression |
|---|---|
| iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4994 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | abrexexg 7939 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 4 | 3 | uniexd 7718 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 6 | 2, 5 | eqeltrd 2828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∪ cuni 4871 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-uni 4872 df-iun 4957 |
| This theorem is referenced by: abrexex2g 7943 opabex3d 7944 opabex3rd 7945 opabex3 7946 iunex 7947 xpexgALT 7960 mpoexxg 8054 ixpexg 8895 ixpssmapg 8901 ttrclselem2 9679 iundom 10495 iunctb 10527 wrdexg 14489 cshwsex 17071 imasplusg 17480 imasmulr 17481 imasvsca 17483 imasip 17484 gsum2d2 19904 gsumcom2 19905 dprd2da 19974 ptcls 23503 ptcmplem2 23940 elpwiuncl 32456 aciunf1lem 32586 gsumpart 32997 gsumwrd2dccat 33007 irngval 33680 esum2dlem 34082 esum2d 34083 esumiun 34084 omssubadd 34291 eulerpartlemgs2 34371 bnj535 34880 bnj546 34886 bnj893 34918 bnj1136 34987 bnj1413 35025 weiunse 36456 numiunnum 36458 eliunov2 43668 fvmptiunrelexplb0d 43673 fvmptiunrelexplb1d 43675 iunrelexp0 43691 collexd 44246 unirnmapsn 45208 iunmapss 45209 ssmapsn 45210 iunmapsn 45211 sge0iunmptlemfi 46411 sge0iunmpt 46416 smflimlem1 46769 smfliminflem 46828 mpoexxg2 48326 imasubclem1 49093 |
| Copyright terms: Public domain | W3C validator |