| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| Ref | Expression |
|---|---|
| iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 5006 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | abrexexg 7959 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 4 | 3 | uniexd 7736 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 6 | 2, 5 | eqeltrd 2834 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ∪ cuni 4883 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-uni 4884 df-iun 4969 |
| This theorem is referenced by: abrexex2g 7963 opabex3d 7964 opabex3rd 7965 opabex3 7966 iunex 7967 xpexgALT 7980 mpoexxg 8074 ixpexg 8936 ixpssmapg 8942 ttrclselem2 9740 iundom 10556 iunctb 10588 wrdexg 14542 cshwsex 17120 imasplusg 17531 imasmulr 17532 imasvsca 17534 imasip 17535 gsum2d2 19955 gsumcom2 19956 dprd2da 20025 ptcls 23554 ptcmplem2 23991 elpwiuncl 32508 aciunf1lem 32640 gsumpart 33051 gsumwrd2dccat 33061 irngval 33726 esum2dlem 34123 esum2d 34124 esumiun 34125 omssubadd 34332 eulerpartlemgs2 34412 bnj535 34921 bnj546 34927 bnj893 34959 bnj1136 35028 bnj1413 35066 weiunse 36486 numiunnum 36488 eliunov2 43703 fvmptiunrelexplb0d 43708 fvmptiunrelexplb1d 43710 iunrelexp0 43726 collexd 44281 unirnmapsn 45238 iunmapss 45239 ssmapsn 45240 iunmapsn 45241 sge0iunmptlemfi 46442 sge0iunmpt 46447 smflimlem1 46800 smfliminflem 46859 mpoexxg2 48313 imasubclem1 49063 |
| Copyright terms: Public domain | W3C validator |