| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| Ref | Expression |
|---|---|
| iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4990 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | abrexexg 7919 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 4 | 3 | uniexd 7698 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 6 | 2, 5 | eqeltrd 2828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ∪ cuni 4867 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-uni 4868 df-iun 4953 |
| This theorem is referenced by: abrexex2g 7922 opabex3d 7923 opabex3rd 7924 opabex3 7925 iunex 7926 xpexgALT 7939 mpoexxg 8033 ixpexg 8872 ixpssmapg 8878 ttrclselem2 9655 iundom 10471 iunctb 10503 wrdexg 14465 cshwsex 17047 imasplusg 17456 imasmulr 17457 imasvsca 17459 imasip 17460 gsum2d2 19888 gsumcom2 19889 dprd2da 19958 ptcls 23536 ptcmplem2 23973 elpwiuncl 32506 aciunf1lem 32636 gsumpart 33040 gsumwrd2dccat 33050 irngval 33673 esum2dlem 34075 esum2d 34076 esumiun 34077 omssubadd 34284 eulerpartlemgs2 34364 bnj535 34873 bnj546 34879 bnj893 34911 bnj1136 34980 bnj1413 35018 weiunse 36449 numiunnum 36451 eliunov2 43661 fvmptiunrelexplb0d 43666 fvmptiunrelexplb1d 43668 iunrelexp0 43684 collexd 44239 unirnmapsn 45201 iunmapss 45202 ssmapsn 45203 iunmapsn 45204 sge0iunmptlemfi 46404 sge0iunmpt 46409 smflimlem1 46762 smfliminflem 46821 mpoexxg2 48319 imasubclem1 49086 |
| Copyright terms: Public domain | W3C validator |