| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunexg | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
| Ref | Expression |
|---|---|
| iunexg | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 5010 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | abrexexg 7967 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 4 | 3 | uniexd 7744 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| 6 | 2, 5 | eqeltrd 2833 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∃wrex 3059 Vcvv 3463 ∪ cuni 4887 ∪ ciun 4971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3465 df-ss 3948 df-uni 4888 df-iun 4973 |
| This theorem is referenced by: abrexex2g 7971 opabex3d 7972 opabex3rd 7973 opabex3 7974 iunex 7975 xpexgALT 7988 mpoexxg 8082 ixpexg 8944 ixpssmapg 8950 ttrclselem2 9748 iundom 10564 iunctb 10596 wrdexg 14545 cshwsex 17121 imasplusg 17534 imasmulr 17535 imasvsca 17537 imasip 17538 gsum2d2 19961 gsumcom2 19962 dprd2da 20031 ptcls 23571 ptcmplem2 24008 elpwiuncl 32475 aciunf1lem 32608 gsumpart 33004 gsumwrd2dccat 33014 irngval 33677 esum2dlem 34068 esum2d 34069 esumiun 34070 omssubadd 34277 eulerpartlemgs2 34357 bnj535 34879 bnj546 34885 bnj893 34917 bnj1136 34986 bnj1413 35024 weiunse 36444 numiunnum 36446 eliunov2 43669 fvmptiunrelexplb0d 43674 fvmptiunrelexplb1d 43676 iunrelexp0 43692 collexd 44248 unirnmapsn 45191 iunmapss 45192 ssmapsn 45193 iunmapsn 45194 sge0iunmptlemfi 46400 sge0iunmpt 46405 smflimlem1 46758 smfliminflem 46817 mpoexxg2 48227 |
| Copyright terms: Public domain | W3C validator |