Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsken | Structured version Visualization version GIF version |
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsken | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltskg 10364 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 270 | . . 3 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simprd 499 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)) |
4 | elpw2g 5237 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇 ↔ 𝐴 ⊆ 𝑇)) | |
5 | 4 | biimpar 481 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ 𝒫 𝑇) |
6 | breq1 5056 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑇 ↔ 𝐴 ≈ 𝑇)) | |
7 | eleq1 2825 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇)) | |
8 | 6, 7 | orbi12d 919 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ↔ (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇))) |
9 | 8 | rspccva 3536 | . 2 ⊢ ((∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
10 | 3, 5, 9 | syl2an2r 685 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 𝒫 cpw 4513 class class class wbr 5053 ≈ cen 8623 Tarskictsk 10362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-tsk 10363 |
This theorem is referenced by: tskssel 10371 inttsk 10388 r1tskina 10396 tskuni 10397 |
Copyright terms: Public domain | W3C validator |