MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsken Structured version   Visualization version   GIF version

Theorem tsken 9974
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsken ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))

Proof of Theorem tsken
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltskg 9970 . . . 4 (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))))
21ibi 259 . . 3 (𝑇 ∈ Tarski → (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇)))
32simprd 488 . 2 (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))
4 elpw2g 5103 . . 3 (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇𝐴𝑇))
54biimpar 470 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴 ∈ 𝒫 𝑇)
6 breq1 4932 . . . 4 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
7 eleq1 2854 . . . 4 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
86, 7orbi12d 902 . . 3 (𝑥 = 𝐴 → ((𝑥𝑇𝑥𝑇) ↔ (𝐴𝑇𝐴𝑇)))
98rspccva 3535 . 2 ((∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴𝑇𝐴𝑇))
103, 5, 9syl2an2r 672 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 833   = wceq 1507  wcel 2050  wral 3089  wrex 3090  wss 3830  𝒫 cpw 4422   class class class wbr 4929  cen 8303  Tarskictsk 9968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2751  ax-sep 5060
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-tsk 9969
This theorem is referenced by:  tskssel  9977  inttsk  9994  r1tskina  10002  tskuni  10003
  Copyright terms: Public domain W3C validator