| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsken | Structured version Visualization version GIF version | ||
| Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| tsken | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltskg 10772 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
| 2 | 1 | ibi 267 | . . 3 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
| 3 | 2 | simprd 495 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)) |
| 4 | elpw2g 5313 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇 ↔ 𝐴 ⊆ 𝑇)) | |
| 5 | 4 | biimpar 477 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ 𝒫 𝑇) |
| 6 | breq1 5126 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑇 ↔ 𝐴 ≈ 𝑇)) | |
| 7 | eleq1 2821 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇)) | |
| 8 | 6, 7 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ↔ (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇))) |
| 9 | 8 | rspccva 3604 | . 2 ⊢ ((∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
| 10 | 3, 5, 9 | syl2an2r 685 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5123 ≈ cen 8964 Tarskictsk 10770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-tsk 10771 |
| This theorem is referenced by: tskssel 10779 inttsk 10796 r1tskina 10804 tskuni 10805 |
| Copyright terms: Public domain | W3C validator |