MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsken Structured version   Visualization version   GIF version

Theorem tsken 10825
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsken ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))

Proof of Theorem tsken
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltskg 10821 . . . 4 (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))))
21ibi 267 . . 3 (𝑇 ∈ Tarski → (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇)))
32simprd 495 . 2 (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))
4 elpw2g 5351 . . 3 (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇𝐴𝑇))
54biimpar 477 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴 ∈ 𝒫 𝑇)
6 breq1 5169 . . . 4 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
7 eleq1 2832 . . . 4 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
86, 7orbi12d 917 . . 3 (𝑥 = 𝐴 → ((𝑥𝑇𝑥𝑇) ↔ (𝐴𝑇𝐴𝑇)))
98rspccva 3634 . 2 ((∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴𝑇𝐴𝑇))
103, 5, 9syl2an2r 684 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cen 9002  Tarskictsk 10819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-tsk 10820
This theorem is referenced by:  tskssel  10828  inttsk  10845  r1tskina  10853  tskuni  10854
  Copyright terms: Public domain W3C validator