Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsken | Structured version Visualization version GIF version |
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsken | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltskg 10437 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 266 | . . 3 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simprd 495 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)) |
4 | elpw2g 5263 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇 ↔ 𝐴 ⊆ 𝑇)) | |
5 | 4 | biimpar 477 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ 𝒫 𝑇) |
6 | breq1 5073 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑇 ↔ 𝐴 ≈ 𝑇)) | |
7 | eleq1 2826 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇)) | |
8 | 6, 7 | orbi12d 915 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ↔ (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇))) |
9 | 8 | rspccva 3551 | . 2 ⊢ ((∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
10 | 3, 5, 9 | syl2an2r 681 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 ≈ cen 8688 Tarskictsk 10435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-tsk 10436 |
This theorem is referenced by: tskssel 10444 inttsk 10461 r1tskina 10469 tskuni 10470 |
Copyright terms: Public domain | W3C validator |