MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsken Structured version   Visualization version   GIF version

Theorem tsken 10441
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsken ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))

Proof of Theorem tsken
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltskg 10437 . . . 4 (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))))
21ibi 266 . . 3 (𝑇 ∈ Tarski → (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇)))
32simprd 495 . 2 (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))
4 elpw2g 5263 . . 3 (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇𝐴𝑇))
54biimpar 477 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴 ∈ 𝒫 𝑇)
6 breq1 5073 . . . 4 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
7 eleq1 2826 . . . 4 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
86, 7orbi12d 915 . . 3 (𝑥 = 𝐴 → ((𝑥𝑇𝑥𝑇) ↔ (𝐴𝑇𝐴𝑇)))
98rspccva 3551 . 2 ((∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴𝑇𝐴𝑇))
103, 5, 9syl2an2r 681 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cen 8688  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-tsk 10436
This theorem is referenced by:  tskssel  10444  inttsk  10461  r1tskina  10469  tskuni  10470
  Copyright terms: Public domain W3C validator