![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunirab | Structured version Visualization version GIF version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab | ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 4945 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
2 | df-rab 3444 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
3 | 2 | unieqi 4943 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
4 | 3 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
5 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑))) | |
6 | an12 644 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ (𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
7 | 6 | exbii 1846 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | 5, 7 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 1, 4, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∃wrex 3076 {crab 3443 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: neiptopuni 23159 cmpcov2 23419 tgcmp 23430 hauscmplem 23435 conncompid 23460 alexsubALT 24080 cvmliftlem15 35266 fnessref 36323 cover2 37675 |
Copyright terms: Public domain | W3C validator |