MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirab Structured version   Visualization version   GIF version

Theorem elunirab 4835
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 4834 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
2 df-rab 3070 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
32unieqi 4832 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
43eleq2i 2829 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
5 df-rex 3067 . . 3 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)))
6 an12 645 . . . 4 ((𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ (𝐴𝑥 ∧ (𝑥𝐵𝜑)))
76exbii 1855 . . 3 (∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
85, 7bitri 278 . 2 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
91, 4, 83bitr4i 306 1 (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wex 1787  wcel 2110  {cab 2714  wrex 3062  {crab 3065   cuni 4819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3067  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-uni 4820
This theorem is referenced by:  neiptopuni  22027  cmpcov2  22287  tgcmp  22298  hauscmplem  22303  conncompid  22328  alexsubALT  22948  cvmliftlem15  32973  fnessref  34283  cover2  35609
  Copyright terms: Public domain W3C validator