Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elunirab | Structured version Visualization version GIF version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab | ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 4854 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
2 | df-rab 3073 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
3 | 2 | unieqi 4852 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
4 | 3 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
5 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑))) | |
6 | an12 642 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ (𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
7 | 6 | exbii 1850 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | 5, 7 | bitri 274 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 1, 4, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {crab 3068 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: neiptopuni 22281 cmpcov2 22541 tgcmp 22552 hauscmplem 22557 conncompid 22582 alexsubALT 23202 cvmliftlem15 33260 fnessref 34546 cover2 35872 |
Copyright terms: Public domain | W3C validator |