MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirab Structured version   Visualization version   GIF version

Theorem elunirab 4852
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 4851 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
2 df-rab 3072 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
32unieqi 4849 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
43eleq2i 2830 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
5 df-rex 3069 . . 3 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)))
6 an12 641 . . . 4 ((𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ (𝐴𝑥 ∧ (𝑥𝐵𝜑)))
76exbii 1851 . . 3 (∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
85, 7bitri 274 . 2 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
91, 4, 83bitr4i 302 1 (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  {cab 2715  wrex 3064  {crab 3067   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837
This theorem is referenced by:  neiptopuni  22189  cmpcov2  22449  tgcmp  22460  hauscmplem  22465  conncompid  22490  alexsubALT  23110  cvmliftlem15  33160  fnessref  34473  cover2  35799
  Copyright terms: Public domain W3C validator