MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Structured version   Visualization version   GIF version

Theorem tgcmp 23431
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 24075, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable groups:   𝑦,𝑧,𝐵   𝑦,𝑋,𝑧

Proof of Theorem tgcmp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (topGen‘𝐵) = (topGen‘𝐵)
21iscmp 23418 . . . 4 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧)))
32simprbi 496 . . 3 ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧))
4 unitg 22996 . . . . . . . 8 (𝐵 ∈ TopBases → (topGen‘𝐵) = 𝐵)
5 eqtr3 2762 . . . . . . . 8 (( (topGen‘𝐵) = 𝐵𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
64, 5sylan 580 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
76eqeq1d 2738 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑦𝑋 = 𝑦))
86eqeq1d 2738 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑧𝑋 = 𝑧))
98rexbidv 3178 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
107, 9imbi12d 344 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1110ralbidv 3177 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
12 bastg 22995 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1312adantr 480 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (topGen‘𝐵))
1413sspwd 4619 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵))
15 ssralv 4065 . . . . 5 (𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1614, 15syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1711, 16sylbid 240 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
183, 17syl5 34 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
19 elpwi 4613 . . . . 5 (𝑢 ∈ 𝒫 (topGen‘𝐵) → 𝑢 ⊆ (topGen‘𝐵))
20 simprr 773 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝑢)
21 simprl 771 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 ⊆ (topGen‘𝐵))
2221sselda 3996 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → 𝑡 ∈ (topGen‘𝐵))
2322adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑡 ∈ (topGen‘𝐵))
24 simprr 773 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑦𝑡)
25 tg2 22994 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (topGen‘𝐵) ∧ 𝑦𝑡) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2623, 24, 25syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2726expr 456 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → (𝑦𝑡 → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡)))
2827reximdva 3167 . . . . . . . . . . . . 13 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑡𝑢 𝑦𝑡 → ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡)))
29 eluni2 4917 . . . . . . . . . . . . 13 (𝑦 𝑢 ↔ ∃𝑡𝑢 𝑦𝑡)
30 elunirab 4928 . . . . . . . . . . . . . 14 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
31 r19.42v 3190 . . . . . . . . . . . . . . 15 (∃𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
3231rexbii 3093 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
33 rexcom 3289 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3430, 32, 333bitr2i 299 . . . . . . . . . . . . 13 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3528, 29, 343imtr4g 296 . . . . . . . . . . . 12 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (𝑦 𝑢𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
3635ssrdv 4002 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
3720, 36eqsstrd 4035 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
38 ssrab2 4091 . . . . . . . . . . . 12 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
3938unissi 4922 . . . . . . . . . . 11 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
40 simplr 769 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝐵)
4139, 40sseqtrrid 4050 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝑋)
4237, 41eqssd 4014 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
43 elpw2g 5340 . . . . . . . . . . . 12 (𝐵 ∈ TopBases → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4443ad2antrr 726 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4538, 44mpbiri 258 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵)
46 unieq 4924 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
4746eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝑋 = 𝑦𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
48 pweq 4620 . . . . . . . . . . . . . 14 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝒫 𝑦 = 𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
4948ineq1d 4228 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝒫 𝑦 ∩ Fin) = (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin))
5049rexeqdv 3326 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
5147, 50imbi12d 344 . . . . . . . . . . 11 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ((𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) ↔ (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5251rspcv 3619 . . . . . . . . . 10 ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5345, 52syl 17 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5442, 53mpid 44 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
55 elfpw 9398 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ↔ (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∧ 𝑧 ∈ Fin))
5655simprbi 496 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ∈ Fin)
5756ad2antrl 728 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ∈ Fin)
5855simplbi 497 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
5958ad2antrl 728 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
60 ssrab 4084 . . . . . . . . . . . . 13 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ (𝑧𝐵 ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡))
6160simprbi 496 . . . . . . . . . . . 12 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
6259, 61syl 17 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
63 sseq2 4023 . . . . . . . . . . . 12 (𝑡 = (𝑓𝑤) → (𝑤𝑡𝑤 ⊆ (𝑓𝑤)))
6463ac6sfi 9324 . . . . . . . . . . 11 ((𝑧 ∈ Fin ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
6557, 62, 64syl2anc 584 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
66 frn 6748 . . . . . . . . . . . . 13 (𝑓:𝑧𝑢 → ran 𝑓𝑢)
6766ad2antrl 728 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑢)
68 ffn 6741 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢𝑓 Fn 𝑧)
69 dffn4 6831 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑧𝑓:𝑧onto→ran 𝑓)
7068, 69sylib 218 . . . . . . . . . . . . . 14 (𝑓:𝑧𝑢𝑓:𝑧onto→ran 𝑓)
7170adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)) → 𝑓:𝑧onto→ran 𝑓)
72 fofi 9355 . . . . . . . . . . . . 13 ((𝑧 ∈ Fin ∧ 𝑓:𝑧onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7357, 71, 72syl2an 596 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ Fin)
74 elfpw 9398 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran 𝑓𝑢 ∧ ran 𝑓 ∈ Fin))
7567, 73, 74sylanbrc 583 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin))
76 simplrr 778 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑧)
77 uniiun 5064 . . . . . . . . . . . . . . . 16 𝑧 = 𝑤𝑧 𝑤
78 ss2iun 5016 . . . . . . . . . . . . . . . 16 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑤𝑧 𝑤 𝑤𝑧 (𝑓𝑤))
7977, 78eqsstrid 4045 . . . . . . . . . . . . . . 15 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑧 𝑤𝑧 (𝑓𝑤))
8079ad2antll 729 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 𝑤𝑧 (𝑓𝑤))
81 fniunfv 7271 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑧 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8268, 81syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8382ad2antrl 728 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8480, 83sseqtrd 4037 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 ran 𝑓)
8576, 84eqsstrd 4035 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 ran 𝑓)
8667unissd 4923 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 𝑢)
8720ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑢)
8886, 87sseqtrrd 4038 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑋)
8985, 88eqssd 4014 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = ran 𝑓)
90 unieq 4924 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 𝑣 = ran 𝑓)
9190rspceeqv 3646 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9275, 89, 91syl2anc 584 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9365, 92exlimddv 1934 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9493rexlimdvaa 3155 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9554, 94syld 47 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9695expr 456 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (𝑋 = 𝑢 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9796com23 86 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9819, 97sylan2 593 . . . 4 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ∈ 𝒫 (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9998ralrimdva 3153 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
100 tgcl 22998 . . . . . 6 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
101100adantr 480 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) ∈ Top)
1021iscmp 23418 . . . . . 6 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
103102baib 535 . . . . 5 ((topGen‘𝐵) ∈ Top → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
104101, 103syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
1056eqeq1d 2738 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑢𝑋 = 𝑢))
1066eqeq1d 2738 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑣𝑋 = 𝑣))
107106rexbidv 3178 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
108105, 107imbi12d 344 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
109108ralbidv 3177 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
110104, 109bitrd 279 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
11199, 110sylibrd 259 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (topGen‘𝐵) ∈ Comp))
11218, 111impbid 212 1 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1538  wex 1777  wcel 2107  wral 3060  wrex 3069  {crab 3434  cin 3963  wss 3964  𝒫 cpw 4606   cuni 4913   ciun 4997  ran crn 5691   Fn wfn 6561  wf 6562  ontowfo 6564  cfv 6566  Fincfn 8990  topGenctg 17490  Topctop 22921  TopBasesctb 22974  Compccmp 23416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-om 7892  df-1o 8511  df-en 8991  df-dom 8992  df-fin 8994  df-topgen 17496  df-top 22922  df-bases 22975  df-cmp 23417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator