MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Structured version   Visualization version   GIF version

Theorem tgcmp 22001
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 22645, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable groups:   𝑦,𝑧,𝐵   𝑦,𝑋,𝑧

Proof of Theorem tgcmp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . . . 5 (topGen‘𝐵) = (topGen‘𝐵)
21iscmp 21988 . . . 4 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧)))
32simprbi 499 . . 3 ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧))
4 unitg 21567 . . . . . . . 8 (𝐵 ∈ TopBases → (topGen‘𝐵) = 𝐵)
5 eqtr3 2841 . . . . . . . 8 (( (topGen‘𝐵) = 𝐵𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
64, 5sylan 582 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
76eqeq1d 2821 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑦𝑋 = 𝑦))
86eqeq1d 2821 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑧𝑋 = 𝑧))
98rexbidv 3295 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
107, 9imbi12d 347 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1110ralbidv 3195 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
12 bastg 21566 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1312adantr 483 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (topGen‘𝐵))
14 sspwb 5332 . . . . . 6 (𝐵 ⊆ (topGen‘𝐵) ↔ 𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵))
1513, 14sylib 220 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵))
16 ssralv 4031 . . . . 5 (𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1715, 16syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1811, 17sylbid 242 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
193, 18syl5 34 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
20 elpwi 4549 . . . . 5 (𝑢 ∈ 𝒫 (topGen‘𝐵) → 𝑢 ⊆ (topGen‘𝐵))
21 simprr 771 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝑢)
22 simprl 769 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 ⊆ (topGen‘𝐵))
2322sselda 3965 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → 𝑡 ∈ (topGen‘𝐵))
2423adantrr 715 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑡 ∈ (topGen‘𝐵))
25 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑦𝑡)
26 tg2 21565 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (topGen‘𝐵) ∧ 𝑦𝑡) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2724, 25, 26syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2827expr 459 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → (𝑦𝑡 → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡)))
2928reximdva 3272 . . . . . . . . . . . . 13 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑡𝑢 𝑦𝑡 → ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡)))
30 eluni2 4834 . . . . . . . . . . . . 13 (𝑦 𝑢 ↔ ∃𝑡𝑢 𝑦𝑡)
31 elunirab 4842 . . . . . . . . . . . . . 14 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
32 r19.42v 3348 . . . . . . . . . . . . . . 15 (∃𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
3332rexbii 3245 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
34 rexcom 3353 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3531, 33, 343bitr2i 301 . . . . . . . . . . . . 13 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3629, 30, 353imtr4g 298 . . . . . . . . . . . 12 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (𝑦 𝑢𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
3736ssrdv 3971 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
3821, 37eqsstrd 4003 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
39 ssrab2 4054 . . . . . . . . . . . 12 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
4039unissi 4853 . . . . . . . . . . 11 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
41 simplr 767 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝐵)
4240, 41sseqtrrid 4018 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝑋)
4338, 42eqssd 3982 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
44 elpw2g 5238 . . . . . . . . . . . 12 (𝐵 ∈ TopBases → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4544ad2antrr 724 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4639, 45mpbiri 260 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵)
47 unieq 4838 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
4847eqeq2d 2830 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝑋 = 𝑦𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
49 pweq 4540 . . . . . . . . . . . . . 14 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝒫 𝑦 = 𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
5049ineq1d 4186 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝒫 𝑦 ∩ Fin) = (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin))
5150rexeqdv 3415 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
5248, 51imbi12d 347 . . . . . . . . . . 11 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ((𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) ↔ (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5352rspcv 3616 . . . . . . . . . 10 ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5446, 53syl 17 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5543, 54mpid 44 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
56 elfpw 8818 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ↔ (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∧ 𝑧 ∈ Fin))
5756simprbi 499 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ∈ Fin)
5857ad2antrl 726 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ∈ Fin)
5956simplbi 500 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
6059ad2antrl 726 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
61 ssrab 4047 . . . . . . . . . . . . 13 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ (𝑧𝐵 ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡))
6261simprbi 499 . . . . . . . . . . . 12 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
6360, 62syl 17 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
64 sseq2 3991 . . . . . . . . . . . 12 (𝑡 = (𝑓𝑤) → (𝑤𝑡𝑤 ⊆ (𝑓𝑤)))
6564ac6sfi 8754 . . . . . . . . . . 11 ((𝑧 ∈ Fin ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
6658, 63, 65syl2anc 586 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
67 frn 6513 . . . . . . . . . . . . 13 (𝑓:𝑧𝑢 → ran 𝑓𝑢)
6867ad2antrl 726 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑢)
69 ffn 6507 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢𝑓 Fn 𝑧)
70 dffn4 6589 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑧𝑓:𝑧onto→ran 𝑓)
7169, 70sylib 220 . . . . . . . . . . . . . 14 (𝑓:𝑧𝑢𝑓:𝑧onto→ran 𝑓)
7271adantr 483 . . . . . . . . . . . . 13 ((𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)) → 𝑓:𝑧onto→ran 𝑓)
73 fofi 8802 . . . . . . . . . . . . 13 ((𝑧 ∈ Fin ∧ 𝑓:𝑧onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7458, 72, 73syl2an 597 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ Fin)
75 elfpw 8818 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran 𝑓𝑢 ∧ ran 𝑓 ∈ Fin))
7668, 74, 75sylanbrc 585 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin))
77 simplrr 776 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑧)
78 uniiun 4973 . . . . . . . . . . . . . . . 16 𝑧 = 𝑤𝑧 𝑤
79 ss2iun 4928 . . . . . . . . . . . . . . . 16 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑤𝑧 𝑤 𝑤𝑧 (𝑓𝑤))
8078, 79eqsstrid 4013 . . . . . . . . . . . . . . 15 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑧 𝑤𝑧 (𝑓𝑤))
8180ad2antll 727 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 𝑤𝑧 (𝑓𝑤))
82 fniunfv 6998 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑧 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8369, 82syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8483ad2antrl 726 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8581, 84sseqtrd 4005 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 ran 𝑓)
8677, 85eqsstrd 4003 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 ran 𝑓)
8768unissd 4854 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 𝑢)
8821ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑢)
8987, 88sseqtrrd 4006 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑋)
9086, 89eqssd 3982 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = ran 𝑓)
91 unieq 4838 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 𝑣 = ran 𝑓)
9291rspceeqv 3636 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9376, 90, 92syl2anc 586 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9466, 93exlimddv 1929 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9594rexlimdvaa 3283 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9655, 95syld 47 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9796expr 459 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (𝑋 = 𝑢 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9897com23 86 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9920, 98sylan2 594 . . . 4 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ∈ 𝒫 (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
10099ralrimdva 3187 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
101 tgcl 21569 . . . . . 6 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
102101adantr 483 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) ∈ Top)
1031iscmp 21988 . . . . . 6 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
104103baib 538 . . . . 5 ((topGen‘𝐵) ∈ Top → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
105102, 104syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
1066eqeq1d 2821 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑢𝑋 = 𝑢))
1076eqeq1d 2821 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑣𝑋 = 𝑣))
108107rexbidv 3295 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
109106, 108imbi12d 347 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
110109ralbidv 3195 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
111105, 110bitrd 281 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
112100, 111sylibrd 261 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (topGen‘𝐵) ∈ Comp))
11319, 112impbid 214 1 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wex 1773  wcel 2107  wral 3136  wrex 3137  {crab 3140  cin 3933  wss 3934  𝒫 cpw 4537   cuni 4830   ciun 4910  ran crn 5549   Fn wfn 6343  wf 6344  ontowfo 6346  cfv 6348  Fincfn 8501  topGenctg 16703  Topctop 21493  TopBasesctb 21545  Compccmp 21986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-fin 8505  df-topgen 16709  df-top 21494  df-bases 21546  df-cmp 21987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator