MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Structured version   Visualization version   GIF version

Theorem tgcmp 22752
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 23396, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable groups:   𝑦,𝑧,𝐵   𝑦,𝑋,𝑧

Proof of Theorem tgcmp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (topGen‘𝐵) = (topGen‘𝐵)
21iscmp 22739 . . . 4 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧)))
32simprbi 497 . . 3 ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧))
4 unitg 22317 . . . . . . . 8 (𝐵 ∈ TopBases → (topGen‘𝐵) = 𝐵)
5 eqtr3 2762 . . . . . . . 8 (( (topGen‘𝐵) = 𝐵𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
64, 5sylan 580 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
76eqeq1d 2738 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑦𝑋 = 𝑦))
86eqeq1d 2738 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑧𝑋 = 𝑧))
98rexbidv 3175 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
107, 9imbi12d 344 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1110ralbidv 3174 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
12 bastg 22316 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1312adantr 481 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (topGen‘𝐵))
1413sspwd 4573 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵))
15 ssralv 4010 . . . . 5 (𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1614, 15syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1711, 16sylbid 239 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
183, 17syl5 34 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
19 elpwi 4567 . . . . 5 (𝑢 ∈ 𝒫 (topGen‘𝐵) → 𝑢 ⊆ (topGen‘𝐵))
20 simprr 771 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝑢)
21 simprl 769 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 ⊆ (topGen‘𝐵))
2221sselda 3944 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → 𝑡 ∈ (topGen‘𝐵))
2322adantrr 715 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑡 ∈ (topGen‘𝐵))
24 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑦𝑡)
25 tg2 22315 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (topGen‘𝐵) ∧ 𝑦𝑡) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2623, 24, 25syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2726expr 457 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → (𝑦𝑡 → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡)))
2827reximdva 3165 . . . . . . . . . . . . 13 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑡𝑢 𝑦𝑡 → ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡)))
29 eluni2 4869 . . . . . . . . . . . . 13 (𝑦 𝑢 ↔ ∃𝑡𝑢 𝑦𝑡)
30 elunirab 4881 . . . . . . . . . . . . . 14 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
31 r19.42v 3187 . . . . . . . . . . . . . . 15 (∃𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
3231rexbii 3097 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
33 rexcom 3273 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3430, 32, 333bitr2i 298 . . . . . . . . . . . . 13 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3528, 29, 343imtr4g 295 . . . . . . . . . . . 12 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (𝑦 𝑢𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
3635ssrdv 3950 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
3720, 36eqsstrd 3982 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
38 ssrab2 4037 . . . . . . . . . . . 12 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
3938unissi 4874 . . . . . . . . . . 11 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
40 simplr 767 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝐵)
4139, 40sseqtrrid 3997 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝑋)
4237, 41eqssd 3961 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
43 elpw2g 5301 . . . . . . . . . . . 12 (𝐵 ∈ TopBases → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4443ad2antrr 724 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4538, 44mpbiri 257 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵)
46 unieq 4876 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
4746eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝑋 = 𝑦𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
48 pweq 4574 . . . . . . . . . . . . . 14 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝒫 𝑦 = 𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
4948ineq1d 4171 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝒫 𝑦 ∩ Fin) = (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin))
5049rexeqdv 3314 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
5147, 50imbi12d 344 . . . . . . . . . . 11 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ((𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) ↔ (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5251rspcv 3577 . . . . . . . . . 10 ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5345, 52syl 17 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5442, 53mpid 44 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
55 elfpw 9298 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ↔ (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∧ 𝑧 ∈ Fin))
5655simprbi 497 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ∈ Fin)
5756ad2antrl 726 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ∈ Fin)
5855simplbi 498 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
5958ad2antrl 726 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
60 ssrab 4030 . . . . . . . . . . . . 13 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ (𝑧𝐵 ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡))
6160simprbi 497 . . . . . . . . . . . 12 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
6259, 61syl 17 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
63 sseq2 3970 . . . . . . . . . . . 12 (𝑡 = (𝑓𝑤) → (𝑤𝑡𝑤 ⊆ (𝑓𝑤)))
6463ac6sfi 9231 . . . . . . . . . . 11 ((𝑧 ∈ Fin ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
6557, 62, 64syl2anc 584 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
66 frn 6675 . . . . . . . . . . . . 13 (𝑓:𝑧𝑢 → ran 𝑓𝑢)
6766ad2antrl 726 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑢)
68 ffn 6668 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢𝑓 Fn 𝑧)
69 dffn4 6762 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑧𝑓:𝑧onto→ran 𝑓)
7068, 69sylib 217 . . . . . . . . . . . . . 14 (𝑓:𝑧𝑢𝑓:𝑧onto→ran 𝑓)
7170adantr 481 . . . . . . . . . . . . 13 ((𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)) → 𝑓:𝑧onto→ran 𝑓)
72 fofi 9282 . . . . . . . . . . . . 13 ((𝑧 ∈ Fin ∧ 𝑓:𝑧onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7357, 71, 72syl2an 596 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ Fin)
74 elfpw 9298 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran 𝑓𝑢 ∧ ran 𝑓 ∈ Fin))
7567, 73, 74sylanbrc 583 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin))
76 simplrr 776 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑧)
77 uniiun 5018 . . . . . . . . . . . . . . . 16 𝑧 = 𝑤𝑧 𝑤
78 ss2iun 4972 . . . . . . . . . . . . . . . 16 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑤𝑧 𝑤 𝑤𝑧 (𝑓𝑤))
7977, 78eqsstrid 3992 . . . . . . . . . . . . . . 15 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑧 𝑤𝑧 (𝑓𝑤))
8079ad2antll 727 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 𝑤𝑧 (𝑓𝑤))
81 fniunfv 7194 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑧 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8268, 81syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8382ad2antrl 726 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8480, 83sseqtrd 3984 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 ran 𝑓)
8576, 84eqsstrd 3982 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 ran 𝑓)
8667unissd 4875 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 𝑢)
8720ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑢)
8886, 87sseqtrrd 3985 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑋)
8985, 88eqssd 3961 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = ran 𝑓)
90 unieq 4876 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 𝑣 = ran 𝑓)
9190rspceeqv 3595 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9275, 89, 91syl2anc 584 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9365, 92exlimddv 1938 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9493rexlimdvaa 3153 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9554, 94syld 47 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9695expr 457 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (𝑋 = 𝑢 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9796com23 86 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9819, 97sylan2 593 . . . 4 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ∈ 𝒫 (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9998ralrimdva 3151 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
100 tgcl 22319 . . . . . 6 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
101100adantr 481 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) ∈ Top)
1021iscmp 22739 . . . . . 6 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
103102baib 536 . . . . 5 ((topGen‘𝐵) ∈ Top → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
104101, 103syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
1056eqeq1d 2738 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑢𝑋 = 𝑢))
1066eqeq1d 2738 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑣𝑋 = 𝑣))
107106rexbidv 3175 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
108105, 107imbi12d 344 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
109108ralbidv 3174 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
110104, 109bitrd 278 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
11199, 110sylibrd 258 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (topGen‘𝐵) ∈ Comp))
11218, 111impbid 211 1 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  {crab 3407  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865   ciun 4954  ran crn 5634   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  Fincfn 8883  topGenctg 17319  Topctop 22242  TopBasesctb 22295  Compccmp 22737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-fin 8887  df-topgen 17325  df-top 22243  df-bases 22296  df-cmp 22738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator