| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . . . 5
⊢ ∪ (topGen‘𝐵) = ∪
(topGen‘𝐵) |
| 2 | 1 | iscmp 23361 |
. . . 4
⊢
((topGen‘𝐵)
∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑦 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧))) |
| 3 | 2 | simprbi 496 |
. . 3
⊢
((topGen‘𝐵)
∈ Comp → ∀𝑦 ∈ 𝒫 (topGen‘𝐵)(∪
(topGen‘𝐵) = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ (topGen‘𝐵) = ∪ 𝑧)) |
| 4 | | unitg 22940 |
. . . . . . . 8
⊢ (𝐵 ∈ TopBases → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| 5 | | eqtr3 2756 |
. . . . . . . 8
⊢ ((∪ (topGen‘𝐵) = ∪ 𝐵 ∧ 𝑋 = ∪ 𝐵) → ∪ (topGen‘𝐵) = 𝑋) |
| 6 | 4, 5 | sylan 580 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → ∪ (topGen‘𝐵) = 𝑋) |
| 7 | 6 | eqeq1d 2736 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
| 8 | 6 | eqeq1d 2736 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧)) |
| 9 | 8 | rexbidv 3166 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
| 10 | 7, 9 | imbi12d 344 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → ((∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 11 | 10 | ralbidv 3165 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧) ↔ ∀𝑦 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 12 | | bastg 22939 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → 𝐵 ⊆ (topGen‘𝐵)) |
| 14 | 13 | sspwd 4595 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → 𝒫 𝐵 ⊆ 𝒫
(topGen‘𝐵)) |
| 15 | | ssralv 4034 |
. . . . 5
⊢
(𝒫 𝐵 ⊆
𝒫 (topGen‘𝐵)
→ (∀𝑦 ∈
𝒫 (topGen‘𝐵)(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 16 | 14, 15 | syl 17 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 17 | 11, 16 | sylbid 240 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 18 | 3, 17 | syl5 34 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp → ∀𝑦
∈ 𝒫 𝐵(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 19 | | elpwi 4589 |
. . . . 5
⊢ (𝑢 ∈ 𝒫
(topGen‘𝐵) →
𝑢 ⊆
(topGen‘𝐵)) |
| 20 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 = ∪ 𝑢) |
| 21 | | simprl 770 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑢 ⊆ (topGen‘𝐵)) |
| 22 | 21 | sselda 3965 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ 𝑡 ∈ 𝑢) → 𝑡 ∈ (topGen‘𝐵)) |
| 23 | 22 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡)) → 𝑡 ∈ (topGen‘𝐵)) |
| 24 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ 𝑡) |
| 25 | | tg2 22938 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ 𝑡) → ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 26 | 23, 24, 25 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡)) → ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 27 | 26 | expr 456 |
. . . . . . . . . . . . . 14
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ 𝑡 ∈ 𝑢) → (𝑦 ∈ 𝑡 → ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡))) |
| 28 | 27 | reximdva 3155 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∃𝑡 ∈ 𝑢 𝑦 ∈ 𝑡 → ∃𝑡 ∈ 𝑢 ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡))) |
| 29 | | eluni2 4893 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∪ 𝑢
↔ ∃𝑡 ∈
𝑢 𝑦 ∈ 𝑡) |
| 30 | | elunirab 4904 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ↔ ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 31 | | r19.42v 3178 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡 ∈
𝑢 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡) ↔ (𝑦 ∈ 𝑤 ∧ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 32 | 31 | rexbii 3082 |
. . . . . . . . . . . . . 14
⊢
(∃𝑤 ∈
𝐵 ∃𝑡 ∈ 𝑢 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡) ↔ ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 33 | | rexcom 3275 |
. . . . . . . . . . . . . 14
⊢
(∃𝑤 ∈
𝐵 ∃𝑡 ∈ 𝑢 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡) ↔ ∃𝑡 ∈ 𝑢 ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 34 | 30, 32, 33 | 3bitr2i 299 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ↔ ∃𝑡 ∈ 𝑢 ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 35 | 28, 29, 34 | 3imtr4g 296 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (𝑦 ∈ ∪ 𝑢 → 𝑦 ∈ ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡})) |
| 36 | 35 | ssrdv 3971 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → ∪ 𝑢
⊆ ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 37 | 20, 36 | eqsstrd 4000 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 ⊆ ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 38 | | ssrab2 4062 |
. . . . . . . . . . . 12
⊢ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝐵 |
| 39 | 38 | unissi 4898 |
. . . . . . . . . . 11
⊢ ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ ∪ 𝐵 |
| 40 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 = ∪ 𝐵) |
| 41 | 39, 40 | sseqtrrid 4009 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝑋) |
| 42 | 37, 41 | eqssd 3983 |
. . . . . . . . 9
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 43 | | elpw2g 5315 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ TopBases → ({𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵 ↔ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝐵)) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → ({𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵 ↔ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝐵)) |
| 45 | 38, 44 | mpbiri 258 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵) |
| 46 | | unieq 4900 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∪ 𝑦 = ∪
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 47 | 46 | eqeq2d 2745 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡})) |
| 48 | | pweq 4596 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → 𝒫 𝑦 = 𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 49 | 48 | ineq1d 4201 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → (𝒫 𝑦 ∩ Fin) = (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)) |
| 50 | 49 | rexeqdv 3311 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧)) |
| 51 | 47, 50 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ((𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) ↔ (𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧))) |
| 52 | 51 | rspcv 3602 |
. . . . . . . . . 10
⊢ ({𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧))) |
| 53 | 45, 52 | syl 17 |
. . . . . . . . 9
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧))) |
| 54 | 42, 53 | mpid 44 |
. . . . . . . 8
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧)) |
| 55 | | elfpw 9377 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ↔ (𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∧ 𝑧 ∈ Fin)) |
| 56 | 55 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) → 𝑧 ∈ Fin) |
| 57 | 56 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → 𝑧 ∈ Fin) |
| 58 | 55 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) → 𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 59 | 58 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → 𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 60 | | ssrab 4055 |
. . . . . . . . . . . . 13
⊢ (𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 61 | 60 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡) |
| 62 | 59, 61 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡) |
| 63 | | sseq2 3992 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑓‘𝑤) → (𝑤 ⊆ 𝑡 ↔ 𝑤 ⊆ (𝑓‘𝑤))) |
| 64 | 63 | ac6sfi 9303 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡) → ∃𝑓(𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) |
| 65 | 57, 62, 64 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → ∃𝑓(𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) |
| 66 | | frn 6724 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑧⟶𝑢 → ran 𝑓 ⊆ 𝑢) |
| 67 | 66 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ran 𝑓 ⊆ 𝑢) |
| 68 | | ffn 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝑧⟶𝑢 → 𝑓 Fn 𝑧) |
| 69 | | dffn4 6807 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝑧 ↔ 𝑓:𝑧–onto→ran 𝑓) |
| 70 | 68, 69 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑧⟶𝑢 → 𝑓:𝑧–onto→ran 𝑓) |
| 71 | 70 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤)) → 𝑓:𝑧–onto→ran 𝑓) |
| 72 | | fofi 9334 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ Fin ∧ 𝑓:𝑧–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
| 73 | 57, 71, 72 | syl2an 596 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ran 𝑓 ∈ Fin) |
| 74 | | elfpw 9377 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran 𝑓 ⊆ 𝑢 ∧ ran 𝑓 ∈ Fin)) |
| 75 | 67, 73, 74 | sylanbrc 583 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin)) |
| 76 | | simplrr 777 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 = ∪ 𝑧) |
| 77 | | uniiun 5040 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 =
∪ 𝑤 ∈ 𝑧 𝑤 |
| 78 | | ss2iun 4992 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
𝑧 𝑤 ⊆ (𝑓‘𝑤) → ∪
𝑤 ∈ 𝑧 𝑤 ⊆ ∪
𝑤 ∈ 𝑧 (𝑓‘𝑤)) |
| 79 | 77, 78 | eqsstrid 4004 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
𝑧 𝑤 ⊆ (𝑓‘𝑤) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 (𝑓‘𝑤)) |
| 80 | 79 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 (𝑓‘𝑤)) |
| 81 | | fniunfv 7250 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn 𝑧 → ∪
𝑤 ∈ 𝑧 (𝑓‘𝑤) = ∪ ran 𝑓) |
| 82 | 68, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝑧⟶𝑢 → ∪
𝑤 ∈ 𝑧 (𝑓‘𝑤) = ∪ ran 𝑓) |
| 83 | 82 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ 𝑤 ∈ 𝑧 (𝑓‘𝑤) = ∪ ran 𝑓) |
| 84 | 80, 83 | sseqtrd 4002 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ 𝑧 ⊆ ∪ ran 𝑓) |
| 85 | 76, 84 | eqsstrd 4000 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 ⊆ ∪ ran
𝑓) |
| 86 | 67 | unissd 4899 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 ⊆ ∪ 𝑢) |
| 87 | 20 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 = ∪ 𝑢) |
| 88 | 86, 87 | sseqtrrd 4003 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 ⊆ 𝑋) |
| 89 | 85, 88 | eqssd 3983 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 = ∪ ran 𝑓) |
| 90 | | unieq 4900 |
. . . . . . . . . . . 12
⊢ (𝑣 = ran 𝑓 → ∪ 𝑣 = ∪
ran 𝑓) |
| 91 | 90 | rspceeqv 3629 |
. . . . . . . . . . 11
⊢ ((ran
𝑓 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ∪
ran 𝑓) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣) |
| 92 | 75, 89, 91 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣) |
| 93 | 65, 92 | exlimddv 1934 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣) |
| 94 | 93 | rexlimdvaa 3143 |
. . . . . . . 8
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣)) |
| 95 | 54, 94 | syld 47 |
. . . . . . 7
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣)) |
| 96 | 95 | expr 456 |
. . . . . 6
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (𝑋 = ∪ 𝑢 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 97 | 96 | com23 86 |
. . . . 5
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 98 | 19, 97 | sylan2 593 |
. . . 4
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ 𝑢 ∈ 𝒫 (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 99 | 98 | ralrimdva 3141 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 100 | | tgcl 22942 |
. . . . . 6
⊢ (𝐵 ∈ TopBases →
(topGen‘𝐵) ∈
Top) |
| 101 | 100 | adantr 480 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
(topGen‘𝐵) ∈
Top) |
| 102 | 1 | iscmp 23361 |
. . . . . 6
⊢
((topGen‘𝐵)
∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣))) |
| 103 | 102 | baib 535 |
. . . . 5
⊢
((topGen‘𝐵)
∈ Top → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣))) |
| 104 | 101, 103 | syl 17 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp ↔ ∀𝑢
∈ 𝒫 (topGen‘𝐵)(∪
(topGen‘𝐵) = ∪ 𝑢
→ ∃𝑣 ∈
(𝒫 𝑢 ∩
Fin)∪ (topGen‘𝐵) = ∪ 𝑣))) |
| 105 | 6 | eqeq1d 2736 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑢 ↔ 𝑋 = ∪ 𝑢)) |
| 106 | 6 | eqeq1d 2736 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑣 ↔ 𝑋 = ∪ 𝑣)) |
| 107 | 106 | rexbidv 3166 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣)) |
| 108 | 105, 107 | imbi12d 344 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → ((∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣) ↔ (𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 109 | 108 | ralbidv 3165 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑢 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣) ↔ ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 110 | 104, 109 | bitrd 279 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp ↔ ∀𝑢
∈ 𝒫 (topGen‘𝐵)(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 111 | 99, 110 | sylibrd 259 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (topGen‘𝐵) ∈ Comp)) |
| 112 | 18, 111 | impbid 212 |
1
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp ↔ ∀𝑦
∈ 𝒫 𝐵(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |