Proof of Theorem cmpcov2
Step | Hyp | Ref
| Expression |
1 | | dfss3 3909 |
. . . . 5
⊢ (𝑋 ⊆ ∪ {𝑦
∈ 𝐽 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑋 𝑥 ∈ ∪ {𝑦 ∈ 𝐽 ∣ 𝜑}) |
2 | | elunirab 4855 |
. . . . . 6
⊢ (𝑥 ∈ ∪ {𝑦
∈ 𝐽 ∣ 𝜑} ↔ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
3 | 2 | ralbii 3092 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 𝑥 ∈ ∪ {𝑦 ∈ 𝐽 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
4 | 1, 3 | sylbbr 235 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑) → 𝑋 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ 𝜑}) |
5 | | ssrab2 4013 |
. . . . . . 7
⊢ {𝑦 ∈ 𝐽 ∣ 𝜑} ⊆ 𝐽 |
6 | 5 | unissi 4848 |
. . . . . 6
⊢ ∪ {𝑦
∈ 𝐽 ∣ 𝜑} ⊆ ∪ 𝐽 |
7 | | iscmp.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
8 | 6, 7 | sseqtrri 3958 |
. . . . 5
⊢ ∪ {𝑦
∈ 𝐽 ∣ 𝜑} ⊆ 𝑋 |
9 | 8 | a1i 11 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑) → ∪ {𝑦 ∈ 𝐽 ∣ 𝜑} ⊆ 𝑋) |
10 | 4, 9 | eqssd 3938 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑) → 𝑋 = ∪ {𝑦 ∈ 𝐽 ∣ 𝜑}) |
11 | 7 | cmpcov 22540 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ {𝑦 ∈ 𝐽 ∣ 𝜑} ⊆ 𝐽 ∧ 𝑋 = ∪ {𝑦 ∈ 𝐽 ∣ 𝜑}) → ∃𝑠 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ 𝜑} ∩ Fin)𝑋 = ∪ 𝑠) |
12 | 5, 11 | mp3an2 1448 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝑋 = ∪
{𝑦 ∈ 𝐽 ∣ 𝜑}) → ∃𝑠 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ 𝜑} ∩ Fin)𝑋 = ∪ 𝑠) |
13 | 10, 12 | sylan2 593 |
. 2
⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑠 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ 𝜑} ∩ Fin)𝑋 = ∪ 𝑠) |
14 | | ssrab 4006 |
. . . . . . . 8
⊢ (𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ↔ (𝑠 ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝑠 𝜑)) |
15 | 14 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑋 = ∪ 𝑠) ↔ ((𝑠 ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝑠 𝜑) ∧ 𝑋 = ∪ 𝑠)) |
16 | | an32 643 |
. . . . . . 7
⊢ (((𝑠 ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝑠 𝜑) ∧ 𝑋 = ∪ 𝑠) ↔ ((𝑠 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑠) ∧ ∀𝑦 ∈ 𝑠 𝜑)) |
17 | | anass 469 |
. . . . . . 7
⊢ (((𝑠 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑠) ∧ ∀𝑦 ∈ 𝑠 𝜑) ↔ (𝑠 ⊆ 𝐽 ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑))) |
18 | 15, 16, 17 | 3bitri 297 |
. . . . . 6
⊢ ((𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑋 = ∪ 𝑠) ↔ (𝑠 ⊆ 𝐽 ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑))) |
19 | 18 | anbi1i 624 |
. . . . 5
⊢ (((𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑋 = ∪ 𝑠) ∧ 𝑠 ∈ Fin) ↔ ((𝑠 ⊆ 𝐽 ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) ∧ 𝑠 ∈ Fin)) |
20 | | an32 643 |
. . . . 5
⊢ (((𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑠 ∈ Fin) ∧ 𝑋 = ∪ 𝑠) ↔ ((𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑋 = ∪ 𝑠) ∧ 𝑠 ∈ Fin)) |
21 | | an32 643 |
. . . . 5
⊢ (((𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin) ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) ↔ ((𝑠 ⊆ 𝐽 ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) ∧ 𝑠 ∈ Fin)) |
22 | 19, 20, 21 | 3bitr4i 303 |
. . . 4
⊢ (((𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑠 ∈ Fin) ∧ 𝑋 = ∪ 𝑠) ↔ ((𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin) ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑))) |
23 | | elfpw 9121 |
. . . . 5
⊢ (𝑠 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ 𝜑} ∩ Fin) ↔ (𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑠 ∈ Fin)) |
24 | 23 | anbi1i 624 |
. . . 4
⊢ ((𝑠 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ 𝜑} ∩ Fin) ∧ 𝑋 = ∪ 𝑠) ↔ ((𝑠 ⊆ {𝑦 ∈ 𝐽 ∣ 𝜑} ∧ 𝑠 ∈ Fin) ∧ 𝑋 = ∪ 𝑠)) |
25 | | elfpw 9121 |
. . . . 5
⊢ (𝑠 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin)) |
26 | 25 | anbi1i 624 |
. . . 4
⊢ ((𝑠 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = ∪
𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) ↔ ((𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin) ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑))) |
27 | 22, 24, 26 | 3bitr4i 303 |
. . 3
⊢ ((𝑠 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ 𝜑} ∩ Fin) ∧ 𝑋 = ∪ 𝑠) ↔ (𝑠 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑))) |
28 | 27 | rexbii2 3179 |
. 2
⊢
(∃𝑠 ∈
(𝒫 {𝑦 ∈ 𝐽 ∣ 𝜑} ∩ Fin)𝑋 = ∪ 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) |
29 | 13, 28 | sylib 217 |
1
⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) |