Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem15 Structured version   Visualization version   GIF version

Theorem cvmliftlem15 35304
Description: Lemma for cvmlift 35305. Discharge the assumptions of cvmliftlem14 35303. The set of all open subsets 𝑢 of the unit interval such that 𝐺𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 24999, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 9321 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 35303. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
Assertion
Ref Expression
cvmliftlem15 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Distinct variable groups:   𝑣,𝐵   𝑓,𝑘,𝑠,𝑢,𝑣,𝐹   𝑃,𝑓,𝑘,𝑢,𝑣   𝐶,𝑓,𝑘,𝑠,𝑢,𝑣   𝜑,𝑓,𝑠   𝑆,𝑓,𝑘,𝑠,𝑢,𝑣   𝑓,𝐺,𝑘,𝑠,𝑢,𝑣   𝑓,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑠)   𝑋(𝑣,𝑢,𝑓,𝑘,𝑠)

Proof of Theorem cvmliftlem15
Dummy variables 𝑏 𝑦 𝑧 𝑎 𝑐 𝑔 𝑗 𝑚 𝑛 𝑡 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4079 . . 3 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II
2 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
32ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝐺 ∈ (II Cn 𝐽))
4 simprl 770 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑗𝐽)
5 cnima 23274 . . . . . . . . . 10 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑗𝐽) → (𝐺𝑗) ∈ II)
63, 4, 5syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺𝑗) ∈ II)
7 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑥 ∈ (0[,]1))
8 simprrl 780 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺𝑥) ∈ 𝑗)
9 iiuni 24908 . . . . . . . . . . . . . 14 (0[,]1) = II
10 cvmliftlem.x . . . . . . . . . . . . . 14 𝑋 = 𝐽
119, 10cnf 23255 . . . . . . . . . . . . 13 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
122, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐺:(0[,]1)⟶𝑋)
1312ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝐺:(0[,]1)⟶𝑋)
14 ffn 6735 . . . . . . . . . . 11 (𝐺:(0[,]1)⟶𝑋𝐺 Fn (0[,]1))
15 elpreima 7077 . . . . . . . . . . 11 (𝐺 Fn (0[,]1) → (𝑥 ∈ (𝐺𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺𝑥) ∈ 𝑗)))
1613, 14, 153syl 18 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝑥 ∈ (𝐺𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺𝑥) ∈ 𝑗)))
177, 8, 16mpbir2and 713 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑥 ∈ (𝐺𝑗))
18 simprrr 781 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝑆𝑗) ≠ ∅)
19 ffun 6738 . . . . . . . . . . . . 13 (𝐺:(0[,]1)⟶𝑋 → Fun 𝐺)
20 funimacnv 6646 . . . . . . . . . . . . 13 (Fun 𝐺 → (𝐺 “ (𝐺𝑗)) = (𝑗 ∩ ran 𝐺))
2113, 19, 203syl 18 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺 “ (𝐺𝑗)) = (𝑗 ∩ ran 𝐺))
22 inss1 4236 . . . . . . . . . . . 12 (𝑗 ∩ ran 𝐺) ⊆ 𝑗
2321, 22eqsstrdi 4027 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
2423ralrimivw 3149 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∀𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
25 r19.2z 4494 . . . . . . . . . 10 (((𝑆𝑗) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗) → ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
2618, 24, 25syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
27 eleq2 2829 . . . . . . . . . . 11 (𝑢 = (𝐺𝑗) → (𝑥𝑢𝑥 ∈ (𝐺𝑗)))
28 imaeq2 6073 . . . . . . . . . . . . 13 (𝑢 = (𝐺𝑗) → (𝐺𝑢) = (𝐺 “ (𝐺𝑗)))
2928sseq1d 4014 . . . . . . . . . . . 12 (𝑢 = (𝐺𝑗) → ((𝐺𝑢) ⊆ 𝑗 ↔ (𝐺 “ (𝐺𝑗)) ⊆ 𝑗))
3029rexbidv 3178 . . . . . . . . . . 11 (𝑢 = (𝐺𝑗) → (∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗 ↔ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗))
3127, 30anbi12d 632 . . . . . . . . . 10 (𝑢 = (𝐺𝑗) → ((𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ (𝑥 ∈ (𝐺𝑗) ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)))
3231rspcev 3621 . . . . . . . . 9 (((𝐺𝑗) ∈ II ∧ (𝑥 ∈ (𝐺𝑗) ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)) → ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
336, 17, 26, 32syl12anc 836 . . . . . . . 8 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
34 cvmliftlem.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3534adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
3612ffvelcdmda 7103 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ 𝑋)
37 cvmliftlem.1 . . . . . . . . . 10 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3837, 10cvmcov 35269 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺𝑥) ∈ 𝑋) → ∃𝑗𝐽 ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))
3935, 36, 38syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]1)) → ∃𝑗𝐽 ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))
4033, 39reximddv 3170 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]1)) → ∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
41 r19.42v 3190 . . . . . . . . 9 (∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
4241rexbii 3093 . . . . . . . 8 (∃𝑢 ∈ II ∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
43 rexcom 3289 . . . . . . . 8 (∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II ∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
44 elunirab 4921 . . . . . . . 8 (𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ↔ ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
4542, 43, 443bitr4i 303 . . . . . . 7 (∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
4640, 45sylib 218 . . . . . 6 ((𝜑𝑥 ∈ (0[,]1)) → 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
4746ex 412 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1) → 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗}))
4847ssrdv 3988 . . . 4 (𝜑 → (0[,]1) ⊆ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
49 uniss 4914 . . . . . 6 ({𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II → {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II)
501, 49mp1i 13 . . . . 5 (𝜑 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II)
5150, 9sseqtrrdi 4024 . . . 4 (𝜑 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ (0[,]1))
5248, 51eqssd 4000 . . 3 (𝜑 → (0[,]1) = {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
53 lebnumii 24999 . . 3 (({𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II ∧ (0[,]1) = {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗}) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)
541, 52, 53sylancr 587 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)
55 fzfi 14014 . . . . 5 (1...𝑛) ∈ Fin
56 imaeq2 6073 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝐺𝑢) = (𝐺𝑣))
5756sseq1d 4014 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝐺𝑢) ⊆ 𝑗 ↔ (𝐺𝑣) ⊆ 𝑗))
58572rexbidv 3221 . . . . . . . 8 (𝑢 = 𝑣 → (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗 ↔ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗))
5958rexrab 3701 . . . . . . 7 (∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 ↔ ∃𝑣 ∈ II (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣))
60 vex 3483 . . . . . . . . . . . . 13 𝑗 ∈ V
61 vex 3483 . . . . . . . . . . . . 13 𝑠 ∈ V
6260, 61op1std 8025 . . . . . . . . . . . 12 (𝑢 = ⟨𝑗, 𝑠⟩ → (1st𝑢) = 𝑗)
6362sseq2d 4015 . . . . . . . . . . 11 (𝑢 = ⟨𝑗, 𝑠⟩ → ((𝐺𝑣) ⊆ (1st𝑢) ↔ (𝐺𝑣) ⊆ 𝑗))
6463rexiunxp 5850 . . . . . . . . . 10 (∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺𝑣) ⊆ (1st𝑢) ↔ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗)
65 imass2 6119 . . . . . . . . . . . 12 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺𝑣))
66 sstr2 3989 . . . . . . . . . . . 12 ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺𝑣) → ((𝐺𝑣) ⊆ (1st𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6765, 66syl 17 . . . . . . . . . . 11 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ((𝐺𝑣) ⊆ (1st𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6867reximdv 3169 . . . . . . . . . 10 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺𝑣) ⊆ (1st𝑢) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6964, 68biimtrrid 243 . . . . . . . . 9 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
7069impcom 407 . . . . . . . 8 ((∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7170rexlimivw 3150 . . . . . . 7 (∃𝑣 ∈ II (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7259, 71sylbi 217 . . . . . 6 (∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7372ralimi 3082 . . . . 5 (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∀𝑘 ∈ (1...𝑛)∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
74 fveq2 6905 . . . . . . 7 (𝑢 = (𝑔𝑘) → (1st𝑢) = (1st ‘(𝑔𝑘)))
7574sseq2d 4015 . . . . . 6 (𝑢 = (𝑔𝑘) → ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢) ↔ (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
7675ac6sfi 9321 . . . . 5 (((1...𝑛) ∈ Fin ∧ ∀𝑘 ∈ (1...𝑛)∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)) → ∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
7755, 73, 76sylancr 587 . . . 4 (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
78 cvmliftlem.b . . . . . . 7 𝐵 = 𝐶
7934ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
802ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝐺 ∈ (II Cn 𝐽))
81 cvmliftlem.p . . . . . . . 8 (𝜑𝑃𝐵)
8281ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑃𝐵)
83 cvmliftlem.e . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8483ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → (𝐹𝑃) = (𝐺‘0))
85 simplr 768 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑛 ∈ ℕ)
86 simprl 770 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
87 sneq 4635 . . . . . . . . . . 11 (𝑗 = 𝑎 → {𝑗} = {𝑎})
88 fveq2 6905 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑆𝑗) = (𝑆𝑎))
8987, 88xpeq12d 5715 . . . . . . . . . 10 (𝑗 = 𝑎 → ({𝑗} × (𝑆𝑗)) = ({𝑎} × (𝑆𝑎)))
9089cbviunv 5039 . . . . . . . . 9 𝑗𝐽 ({𝑗} × (𝑆𝑗)) = 𝑎𝐽 ({𝑎} × (𝑆𝑎))
91 feq3 6717 . . . . . . . . 9 ( 𝑗𝐽 ({𝑗} × (𝑆𝑗)) = 𝑎𝐽 ({𝑎} × (𝑆𝑎)) → (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎))))
9290, 91ax-mp 5 . . . . . . . 8 (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎)))
9386, 92sylib 218 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎)))
94 simprr 772 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))
95 eqid 2736 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
96 2fveq3 6910 . . . . . . . . . . 11 (𝑡 = 𝑧 → ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)) = ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)))
9796cbvmptv 5254 . . . . . . . . . 10 (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)))
98 eleq2 2829 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑏 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐 ↔ (𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
9998cbvriotavw 7399 . . . . . . . . . . . . . . 15 (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)
100 fveq1 6904 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑤 − 1) / 𝑛)))
101100eleq1d 2825 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
102101riotabidv 7391 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
10399, 102eqtrid 2788 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
104103reseq2d 5996 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)))
105104cnveqd 5885 . . . . . . . . . . . 12 (𝑦 = 𝑥(𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)))
106105fveq1d 6907 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))
107106mpteq2dv 5243 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
10897, 107eqtrid 2788 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
109 oveq1 7439 . . . . . . . . . . . 12 (𝑤 = 𝑚 → (𝑤 − 1) = (𝑚 − 1))
110109oveq1d 7447 . . . . . . . . . . 11 (𝑤 = 𝑚 → ((𝑤 − 1) / 𝑛) = ((𝑚 − 1) / 𝑛))
111 oveq1 7439 . . . . . . . . . . 11 (𝑤 = 𝑚 → (𝑤 / 𝑛) = (𝑚 / 𝑛))
112110, 111oveq12d 7450 . . . . . . . . . 10 (𝑤 = 𝑚 → (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) = (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)))
113 2fveq3 6910 . . . . . . . . . . . . . 14 (𝑤 = 𝑚 → (2nd ‘(𝑔𝑤)) = (2nd ‘(𝑔𝑚)))
114110fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑤 = 𝑚 → (𝑥‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑚 − 1) / 𝑛)))
115114eleq1d 2825 . . . . . . . . . . . . . 14 (𝑤 = 𝑚 → ((𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))
116113, 115riotaeqbidv 7392 . . . . . . . . . . . . 13 (𝑤 = 𝑚 → (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))
117116reseq2d 5996 . . . . . . . . . . . 12 (𝑤 = 𝑚 → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)))
118117cnveqd 5885 . . . . . . . . . . 11 (𝑤 = 𝑚(𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)))
119118fveq1d 6907 . . . . . . . . . 10 (𝑤 = 𝑚 → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))
120112, 119mpteq12dv 5232 . . . . . . . . 9 (𝑤 = 𝑚 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))) = (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
121108, 120cbvmpov 7529 . . . . . . . 8 (𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
122 seqeq2 14047 . . . . . . . 8 ((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))) → seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})) = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})))
123121, 122ax-mp 5 . . . . . . 7 seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})) = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
124 eqid 2736 . . . . . . 7 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑘) = 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑘)
12537, 78, 10, 79, 80, 82, 84, 85, 93, 94, 95, 123, 124cvmliftlem14 35303 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
126125ex 412 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
127126exlimdv 1932 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
12877, 127syl5 34 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
129128rexlimdva 3154 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
13054, 129mpd 15 1 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  ∃!wreu 3377  {crab 3435  Vcvv 3479  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625  cop 4631   cuni 4906   ciun 4990  cmpt 5224   I cid 5576   × cxp 5682  ccnv 5683  ran crn 5685  cres 5686  cima 5687  ccom 5688  Fun wfun 6554   Fn wfn 6555  wf 6556  cfv 6560  crio 7388  (class class class)co 7432  cmpo 7434  1st c1st 8013  2nd c2nd 8014  Fincfn 8986  0cc0 11156  1c1 11157  cmin 11493   / cdiv 11921  cn 12267  (,)cioo 13388  [,]cicc 13391  ...cfz 13548  seqcseq 14043  t crest 17466  topGenctg 17483   Cn ccn 23233  Homeochmeo 23762  IIcii 24902   CovMap ccvm 35261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-ec 8748  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-cn 23236  df-cnp 23237  df-cmp 23396  df-conn 23421  df-lly 23475  df-nlly 23476  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-ii 24904  df-cncf 24905  df-htpy 25003  df-phtpy 25004  df-phtpc 25025  df-pconn 35227  df-sconn 35228  df-cvm 35262
This theorem is referenced by:  cvmlift  35305
  Copyright terms: Public domain W3C validator