| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 4060 |
. . 3
⊢ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ II |
| 2 | | cvmliftlem.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 3 | 2 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝐺 ∈ (II Cn 𝐽)) |
| 4 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝑗 ∈ 𝐽) |
| 5 | | cnima 23208 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑗 ∈ 𝐽) → (◡𝐺 “ 𝑗) ∈ II) |
| 6 | 3, 4, 5 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (◡𝐺 “ 𝑗) ∈ II) |
| 7 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝑥 ∈ (0[,]1)) |
| 8 | | simprrl 780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝐺‘𝑥) ∈ 𝑗) |
| 9 | | iiuni 24830 |
. . . . . . . . . . . . . 14
⊢ (0[,]1) =
∪ II |
| 10 | | cvmliftlem.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 = ∪
𝐽 |
| 11 | 9, 10 | cnf 23189 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
| 12 | 2, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) |
| 13 | 12 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝐺:(0[,]1)⟶𝑋) |
| 14 | | ffn 6711 |
. . . . . . . . . . 11
⊢ (𝐺:(0[,]1)⟶𝑋 → 𝐺 Fn (0[,]1)) |
| 15 | | elpreima 7053 |
. . . . . . . . . . 11
⊢ (𝐺 Fn (0[,]1) → (𝑥 ∈ (◡𝐺 “ 𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺‘𝑥) ∈ 𝑗))) |
| 16 | 13, 14, 15 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝑥 ∈ (◡𝐺 “ 𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺‘𝑥) ∈ 𝑗))) |
| 17 | 7, 8, 16 | mpbir2and 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝑥 ∈ (◡𝐺 “ 𝑗)) |
| 18 | | simprrr 781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝑆‘𝑗) ≠ ∅) |
| 19 | | ffun 6714 |
. . . . . . . . . . . . 13
⊢ (𝐺:(0[,]1)⟶𝑋 → Fun 𝐺) |
| 20 | | funimacnv 6622 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐺 → (𝐺 “ (◡𝐺 “ 𝑗)) = (𝑗 ∩ ran 𝐺)) |
| 21 | 13, 19, 20 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝐺 “ (◡𝐺 “ 𝑗)) = (𝑗 ∩ ran 𝐺)) |
| 22 | | inss1 4217 |
. . . . . . . . . . . 12
⊢ (𝑗 ∩ ran 𝐺) ⊆ 𝑗 |
| 23 | 21, 22 | eqsstrdi 4008 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) |
| 24 | 23 | ralrimivw 3137 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → ∀𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) |
| 25 | | r19.2z 4475 |
. . . . . . . . . 10
⊢ (((𝑆‘𝑗) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) → ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) |
| 26 | 18, 24, 25 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) |
| 27 | | eleq2 2824 |
. . . . . . . . . . 11
⊢ (𝑢 = (◡𝐺 “ 𝑗) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ (◡𝐺 “ 𝑗))) |
| 28 | | imaeq2 6048 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (◡𝐺 “ 𝑗) → (𝐺 “ 𝑢) = (𝐺 “ (◡𝐺 “ 𝑗))) |
| 29 | 28 | sseq1d 3995 |
. . . . . . . . . . . 12
⊢ (𝑢 = (◡𝐺 “ 𝑗) → ((𝐺 “ 𝑢) ⊆ 𝑗 ↔ (𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗)) |
| 30 | 29 | rexbidv 3165 |
. . . . . . . . . . 11
⊢ (𝑢 = (◡𝐺 “ 𝑗) → (∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗 ↔ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗)) |
| 31 | 27, 30 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑢 = (◡𝐺 “ 𝑗) → ((𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ (𝑥 ∈ (◡𝐺 “ 𝑗) ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗))) |
| 32 | 31 | rspcev 3606 |
. . . . . . . . 9
⊢ (((◡𝐺 “ 𝑗) ∈ II ∧ (𝑥 ∈ (◡𝐺 “ 𝑗) ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗)) → ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) |
| 33 | 6, 17, 26, 32 | syl12anc 836 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) |
| 34 | | cvmliftlem.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 35 | 34 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 36 | 12 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → (𝐺‘𝑥) ∈ 𝑋) |
| 37 | | cvmliftlem.1 |
. . . . . . . . . 10
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 38 | 37, 10 | cvmcov 35290 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘𝑥) ∈ 𝑋) → ∃𝑗 ∈ 𝐽 ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅)) |
| 39 | 35, 36, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → ∃𝑗 ∈ 𝐽 ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅)) |
| 40 | 33, 39 | reximddv 3157 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → ∃𝑗 ∈ 𝐽 ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) |
| 41 | | r19.42v 3177 |
. . . . . . . . 9
⊢
(∃𝑗 ∈
𝐽 (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ (𝑥 ∈ 𝑢 ∧ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) |
| 42 | 41 | rexbii 3084 |
. . . . . . . 8
⊢
(∃𝑢 ∈ II
∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) |
| 43 | | rexcom 3275 |
. . . . . . . 8
⊢
(∃𝑗 ∈
𝐽 ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) |
| 44 | | elunirab 4903 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ↔ ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) |
| 45 | 42, 43, 44 | 3bitr4i 303 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝐽 ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ 𝑥 ∈ ∪ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) |
| 46 | 40, 45 | sylib 218 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ∪ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) |
| 47 | 46 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0[,]1) → 𝑥 ∈ ∪ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗})) |
| 48 | 47 | ssrdv 3969 |
. . . 4
⊢ (𝜑 → (0[,]1) ⊆ ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) |
| 49 | | uniss 4896 |
. . . . . 6
⊢ ({𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ II → ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ ∪
II) |
| 50 | 1, 49 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ ∪
II) |
| 51 | 50, 9 | sseqtrrdi 4005 |
. . . 4
⊢ (𝜑 → ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ (0[,]1)) |
| 52 | 48, 51 | eqssd 3981 |
. . 3
⊢ (𝜑 → (0[,]1) = ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) |
| 53 | | lebnumii 24921 |
. . 3
⊢ (({𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ II ∧ (0[,]1) = ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) |
| 54 | 1, 52, 53 | sylancr 587 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) |
| 55 | | fzfi 13995 |
. . . . 5
⊢
(1...𝑛) ∈
Fin |
| 56 | | imaeq2 6048 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (𝐺 “ 𝑢) = (𝐺 “ 𝑣)) |
| 57 | 56 | sseq1d 3995 |
. . . . . . . . 9
⊢ (𝑢 = 𝑣 → ((𝐺 “ 𝑢) ⊆ 𝑗 ↔ (𝐺 “ 𝑣) ⊆ 𝑗)) |
| 58 | 57 | 2rexbidv 3210 |
. . . . . . . 8
⊢ (𝑢 = 𝑣 → (∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗 ↔ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗)) |
| 59 | 58 | rexrab 3684 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑢 ∈ II ∣
∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 ↔ ∃𝑣 ∈ II (∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)) |
| 60 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑗 ∈ V |
| 61 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑠 ∈ V |
| 62 | 60, 61 | op1std 8003 |
. . . . . . . . . . . 12
⊢ (𝑢 = 〈𝑗, 𝑠〉 → (1st ‘𝑢) = 𝑗) |
| 63 | 62 | sseq2d 3996 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑗, 𝑠〉 → ((𝐺 “ 𝑣) ⊆ (1st ‘𝑢) ↔ (𝐺 “ 𝑣) ⊆ 𝑗)) |
| 64 | 63 | rexiunxp 5825 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ 𝑣) ⊆ (1st ‘𝑢) ↔ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗) |
| 65 | | imass2 6094 |
. . . . . . . . . . . 12
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺 “ 𝑣)) |
| 66 | | sstr2 3970 |
. . . . . . . . . . . 12
⊢ ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺 “ 𝑣) → ((𝐺 “ 𝑣) ⊆ (1st ‘𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ((𝐺 “ 𝑣) ⊆ (1st ‘𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) |
| 68 | 67 | reximdv 3156 |
. . . . . . . . . 10
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ 𝑣) ⊆ (1st ‘𝑢) → ∃𝑢 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) |
| 69 | 64, 68 | biimtrrid 243 |
. . . . . . . . 9
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) |
| 70 | 69 | impcom 407 |
. . . . . . . 8
⊢
((∃𝑗 ∈
𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) |
| 71 | 70 | rexlimivw 3138 |
. . . . . . 7
⊢
(∃𝑣 ∈ II
(∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) |
| 72 | 59, 71 | sylbi 217 |
. . . . . 6
⊢
(∃𝑣 ∈
{𝑢 ∈ II ∣
∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) |
| 73 | 72 | ralimi 3074 |
. . . . 5
⊢
(∀𝑘 ∈
(1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∀𝑘 ∈ (1...𝑛)∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) |
| 74 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑢 = (𝑔‘𝑘) → (1st ‘𝑢) = (1st
‘(𝑔‘𝑘))) |
| 75 | 74 | sseq2d 3996 |
. . . . . 6
⊢ (𝑢 = (𝑔‘𝑘) → ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢) ↔ (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) |
| 76 | 75 | ac6sfi 9297 |
. . . . 5
⊢
(((1...𝑛) ∈ Fin
∧ ∀𝑘 ∈
(1...𝑛)∃𝑢 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) → ∃𝑔(𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) |
| 77 | 55, 73, 76 | sylancr 587 |
. . . 4
⊢
(∀𝑘 ∈
(1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑔(𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) |
| 78 | | cvmliftlem.b |
. . . . . . 7
⊢ 𝐵 = ∪
𝐶 |
| 79 | 34 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 80 | 2 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝐺 ∈ (II Cn 𝐽)) |
| 81 | | cvmliftlem.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| 82 | 81 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑃 ∈ 𝐵) |
| 83 | | cvmliftlem.e |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| 84 | 83 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → (𝐹‘𝑃) = (𝐺‘0)) |
| 85 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑛 ∈ ℕ) |
| 86 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| 87 | | sneq 4616 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑎 → {𝑗} = {𝑎}) |
| 88 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑎 → (𝑆‘𝑗) = (𝑆‘𝑎)) |
| 89 | 87, 88 | xpeq12d 5690 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑎 → ({𝑗} × (𝑆‘𝑗)) = ({𝑎} × (𝑆‘𝑎))) |
| 90 | 89 | cbviunv 5021 |
. . . . . . . . 9
⊢ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) = ∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎)) |
| 91 | | feq3 6693 |
. . . . . . . . 9
⊢ (∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) = ∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎)) → (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ 𝑔:(1...𝑛)⟶∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎)))) |
| 92 | 90, 91 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ 𝑔:(1...𝑛)⟶∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎))) |
| 93 | 86, 92 | sylib 218 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑔:(1...𝑛)⟶∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎))) |
| 94 | | simprr 772 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘))) |
| 95 | | eqid 2736 |
. . . . . . 7
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
| 96 | | 2fveq3 6886 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑧 → (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)) = (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧))) |
| 97 | 96 | cbvmptv 5230 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧))) |
| 98 | | eleq2 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑏 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐 ↔ (𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) |
| 99 | 98 | cbvriotavw 7377 |
. . . . . . . . . . . . . . 15
⊢
(℩𝑐
∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) |
| 100 | | fveq1 6880 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝑦‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑤 − 1) / 𝑛))) |
| 101 | 100 | eleq1d 2820 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) |
| 102 | 101 | riotabidv 7369 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) |
| 103 | 99, 102 | eqtrid 2783 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) |
| 104 | 103 | reseq2d 5971 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))) |
| 105 | 104 | cnveqd 5860 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))) |
| 106 | 105 | fveq1d 6883 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧)) = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧))) |
| 107 | 106 | mpteq2dv 5220 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 108 | 97, 107 | eqtrid 2783 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 109 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑚 → (𝑤 − 1) = (𝑚 − 1)) |
| 110 | 109 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑚 → ((𝑤 − 1) / 𝑛) = ((𝑚 − 1) / 𝑛)) |
| 111 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑚 → (𝑤 / 𝑛) = (𝑚 / 𝑛)) |
| 112 | 110, 111 | oveq12d 7428 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑚 → (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) = (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛))) |
| 113 | | 2fveq3 6886 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑚 → (2nd ‘(𝑔‘𝑤)) = (2nd ‘(𝑔‘𝑚))) |
| 114 | 110 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑚 → (𝑥‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑚 − 1) / 𝑛))) |
| 115 | 114 | eleq1d 2820 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑚 → ((𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)) |
| 116 | 113, 115 | riotaeqbidv 7370 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑚 → (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)) |
| 117 | 116 | reseq2d 5971 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑚 → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))) |
| 118 | 117 | cnveqd 5860 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑚 → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))) |
| 119 | 118 | fveq1d 6883 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑚 → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)) = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧))) |
| 120 | 112, 119 | mpteq12dv 5212 |
. . . . . . . . 9
⊢ (𝑤 = 𝑚 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 121 | 108, 120 | cbvmpov 7507 |
. . . . . . . 8
⊢ (𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 122 | | seqeq2 14028 |
. . . . . . . 8
⊢ ((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) → seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))
= seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))) |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . 7
⊢
seq0((𝑦 ∈ V,
𝑤 ∈ ℕ ↦
(𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))
= seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
| 124 | | eqid 2736 |
. . . . . . 7
⊢ ∪ 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))‘𝑘) = ∪ 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))‘𝑘) |
| 125 | 37, 78, 10, 79, 80, 82, 84, 85, 93, 94, 95, 123, 124 | cvmliftlem14 35324 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
| 126 | 125 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) |
| 127 | 126 | exlimdv 1933 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑔(𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) |
| 128 | 77, 127 | syl5 34 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) |
| 129 | 128 | rexlimdva 3142 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) |
| 130 | 54, 129 | mpd 15 |
1
⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |