| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssrab2 4079 | . . 3
⊢ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ II | 
| 2 |  | cvmliftlem.g | . . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | 
| 3 | 2 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝐺 ∈ (II Cn 𝐽)) | 
| 4 |  | simprl 770 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝑗 ∈ 𝐽) | 
| 5 |  | cnima 23274 | . . . . . . . . . 10
⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑗 ∈ 𝐽) → (◡𝐺 “ 𝑗) ∈ II) | 
| 6 | 3, 4, 5 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (◡𝐺 “ 𝑗) ∈ II) | 
| 7 |  | simplr 768 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝑥 ∈ (0[,]1)) | 
| 8 |  | simprrl 780 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝐺‘𝑥) ∈ 𝑗) | 
| 9 |  | iiuni 24908 | . . . . . . . . . . . . . 14
⊢ (0[,]1) =
∪ II | 
| 10 |  | cvmliftlem.x | . . . . . . . . . . . . . 14
⊢ 𝑋 = ∪
𝐽 | 
| 11 | 9, 10 | cnf 23255 | . . . . . . . . . . . . 13
⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) | 
| 12 | 2, 11 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:(0[,]1)⟶𝑋) | 
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝐺:(0[,]1)⟶𝑋) | 
| 14 |  | ffn 6735 | . . . . . . . . . . 11
⊢ (𝐺:(0[,]1)⟶𝑋 → 𝐺 Fn (0[,]1)) | 
| 15 |  | elpreima 7077 | . . . . . . . . . . 11
⊢ (𝐺 Fn (0[,]1) → (𝑥 ∈ (◡𝐺 “ 𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺‘𝑥) ∈ 𝑗))) | 
| 16 | 13, 14, 15 | 3syl 18 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝑥 ∈ (◡𝐺 “ 𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺‘𝑥) ∈ 𝑗))) | 
| 17 | 7, 8, 16 | mpbir2and 713 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → 𝑥 ∈ (◡𝐺 “ 𝑗)) | 
| 18 |  | simprrr 781 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝑆‘𝑗) ≠ ∅) | 
| 19 |  | ffun 6738 | . . . . . . . . . . . . 13
⊢ (𝐺:(0[,]1)⟶𝑋 → Fun 𝐺) | 
| 20 |  | funimacnv 6646 | . . . . . . . . . . . . 13
⊢ (Fun
𝐺 → (𝐺 “ (◡𝐺 “ 𝑗)) = (𝑗 ∩ ran 𝐺)) | 
| 21 | 13, 19, 20 | 3syl 18 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝐺 “ (◡𝐺 “ 𝑗)) = (𝑗 ∩ ran 𝐺)) | 
| 22 |  | inss1 4236 | . . . . . . . . . . . 12
⊢ (𝑗 ∩ ran 𝐺) ⊆ 𝑗 | 
| 23 | 21, 22 | eqsstrdi 4027 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → (𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) | 
| 24 | 23 | ralrimivw 3149 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → ∀𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) | 
| 25 |  | r19.2z 4494 | . . . . . . . . . 10
⊢ (((𝑆‘𝑗) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) → ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) | 
| 26 | 18, 24, 25 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗) | 
| 27 |  | eleq2 2829 | . . . . . . . . . . 11
⊢ (𝑢 = (◡𝐺 “ 𝑗) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ (◡𝐺 “ 𝑗))) | 
| 28 |  | imaeq2 6073 | . . . . . . . . . . . . 13
⊢ (𝑢 = (◡𝐺 “ 𝑗) → (𝐺 “ 𝑢) = (𝐺 “ (◡𝐺 “ 𝑗))) | 
| 29 | 28 | sseq1d 4014 | . . . . . . . . . . . 12
⊢ (𝑢 = (◡𝐺 “ 𝑗) → ((𝐺 “ 𝑢) ⊆ 𝑗 ↔ (𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗)) | 
| 30 | 29 | rexbidv 3178 | . . . . . . . . . . 11
⊢ (𝑢 = (◡𝐺 “ 𝑗) → (∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗 ↔ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗)) | 
| 31 | 27, 30 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑢 = (◡𝐺 “ 𝑗) → ((𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ (𝑥 ∈ (◡𝐺 “ 𝑗) ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗))) | 
| 32 | 31 | rspcev 3621 | . . . . . . . . 9
⊢ (((◡𝐺 “ 𝑗) ∈ II ∧ (𝑥 ∈ (◡𝐺 “ 𝑗) ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ (◡𝐺 “ 𝑗)) ⊆ 𝑗)) → ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) | 
| 33 | 6, 17, 26, 32 | syl12anc 836 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ (𝑗 ∈ 𝐽 ∧ ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅))) → ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) | 
| 34 |  | cvmliftlem.f | . . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 35 | 34 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 36 | 12 | ffvelcdmda 7103 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → (𝐺‘𝑥) ∈ 𝑋) | 
| 37 |  | cvmliftlem.1 | . . . . . . . . . 10
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | 
| 38 | 37, 10 | cvmcov 35269 | . . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘𝑥) ∈ 𝑋) → ∃𝑗 ∈ 𝐽 ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅)) | 
| 39 | 35, 36, 38 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → ∃𝑗 ∈ 𝐽 ((𝐺‘𝑥) ∈ 𝑗 ∧ (𝑆‘𝑗) ≠ ∅)) | 
| 40 | 33, 39 | reximddv 3170 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → ∃𝑗 ∈ 𝐽 ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) | 
| 41 |  | r19.42v 3190 | . . . . . . . . 9
⊢
(∃𝑗 ∈
𝐽 (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ (𝑥 ∈ 𝑢 ∧ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) | 
| 42 | 41 | rexbii 3093 | . . . . . . . 8
⊢
(∃𝑢 ∈ II
∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) | 
| 43 |  | rexcom 3289 | . . . . . . . 8
⊢
(∃𝑗 ∈
𝐽 ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) | 
| 44 |  | elunirab 4921 | . . . . . . . 8
⊢ (𝑥 ∈ ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ↔ ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗)) | 
| 45 | 42, 43, 44 | 3bitr4i 303 | . . . . . . 7
⊢
(∃𝑗 ∈
𝐽 ∃𝑢 ∈ II (𝑥 ∈ 𝑢 ∧ ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗) ↔ 𝑥 ∈ ∪ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) | 
| 46 | 40, 45 | sylib 218 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ∪ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) | 
| 47 | 46 | ex 412 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (0[,]1) → 𝑥 ∈ ∪ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗})) | 
| 48 | 47 | ssrdv 3988 | . . . 4
⊢ (𝜑 → (0[,]1) ⊆ ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) | 
| 49 |  | uniss 4914 | . . . . . 6
⊢ ({𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ II → ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ ∪
II) | 
| 50 | 1, 49 | mp1i 13 | . . . . 5
⊢ (𝜑 → ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ ∪
II) | 
| 51 | 50, 9 | sseqtrrdi 4024 | . . . 4
⊢ (𝜑 → ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ (0[,]1)) | 
| 52 | 48, 51 | eqssd 4000 | . . 3
⊢ (𝜑 → (0[,]1) = ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) | 
| 53 |  | lebnumii 24999 | . . 3
⊢ (({𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} ⊆ II ∧ (0[,]1) = ∪ {𝑢
∈ II ∣ ∃𝑗
∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗}) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) | 
| 54 | 1, 52, 53 | sylancr 587 | . 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) | 
| 55 |  | fzfi 14014 | . . . . 5
⊢
(1...𝑛) ∈
Fin | 
| 56 |  | imaeq2 6073 | . . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (𝐺 “ 𝑢) = (𝐺 “ 𝑣)) | 
| 57 | 56 | sseq1d 4014 | . . . . . . . . 9
⊢ (𝑢 = 𝑣 → ((𝐺 “ 𝑢) ⊆ 𝑗 ↔ (𝐺 “ 𝑣) ⊆ 𝑗)) | 
| 58 | 57 | 2rexbidv 3221 | . . . . . . . 8
⊢ (𝑢 = 𝑣 → (∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗 ↔ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗)) | 
| 59 | 58 | rexrab 3701 | . . . . . . 7
⊢
(∃𝑣 ∈
{𝑢 ∈ II ∣
∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 ↔ ∃𝑣 ∈ II (∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)) | 
| 60 |  | vex 3483 | . . . . . . . . . . . . 13
⊢ 𝑗 ∈ V | 
| 61 |  | vex 3483 | . . . . . . . . . . . . 13
⊢ 𝑠 ∈ V | 
| 62 | 60, 61 | op1std 8025 | . . . . . . . . . . . 12
⊢ (𝑢 = 〈𝑗, 𝑠〉 → (1st ‘𝑢) = 𝑗) | 
| 63 | 62 | sseq2d 4015 | . . . . . . . . . . 11
⊢ (𝑢 = 〈𝑗, 𝑠〉 → ((𝐺 “ 𝑣) ⊆ (1st ‘𝑢) ↔ (𝐺 “ 𝑣) ⊆ 𝑗)) | 
| 64 | 63 | rexiunxp 5850 | . . . . . . . . . 10
⊢
(∃𝑢 ∈
∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ 𝑣) ⊆ (1st ‘𝑢) ↔ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗) | 
| 65 |  | imass2 6119 | . . . . . . . . . . . 12
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺 “ 𝑣)) | 
| 66 |  | sstr2 3989 | . . . . . . . . . . . 12
⊢ ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺 “ 𝑣) → ((𝐺 “ 𝑣) ⊆ (1st ‘𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) | 
| 67 | 65, 66 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ((𝐺 “ 𝑣) ⊆ (1st ‘𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) | 
| 68 | 67 | reximdv 3169 | . . . . . . . . . 10
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ 𝑣) ⊆ (1st ‘𝑢) → ∃𝑢 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) | 
| 69 | 64, 68 | biimtrrid 243 | . . . . . . . . 9
⊢ ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢))) | 
| 70 | 69 | impcom 407 | . . . . . . . 8
⊢
((∃𝑗 ∈
𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) | 
| 71 | 70 | rexlimivw 3150 | . . . . . . 7
⊢
(∃𝑣 ∈ II
(∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) | 
| 72 | 59, 71 | sylbi 217 | . . . . . 6
⊢
(∃𝑣 ∈
{𝑢 ∈ II ∣
∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) | 
| 73 | 72 | ralimi 3082 | . . . . 5
⊢
(∀𝑘 ∈
(1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∀𝑘 ∈ (1...𝑛)∃𝑢 ∈ ∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) | 
| 74 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑢 = (𝑔‘𝑘) → (1st ‘𝑢) = (1st
‘(𝑔‘𝑘))) | 
| 75 | 74 | sseq2d 4015 | . . . . . 6
⊢ (𝑢 = (𝑔‘𝑘) → ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢) ↔ (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) | 
| 76 | 75 | ac6sfi 9321 | . . . . 5
⊢
(((1...𝑛) ∈ Fin
∧ ∀𝑘 ∈
(1...𝑛)∃𝑢 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘𝑢)) → ∃𝑔(𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) | 
| 77 | 55, 73, 76 | sylancr 587 | . . . 4
⊢
(∀𝑘 ∈
(1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑔(𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) | 
| 78 |  | cvmliftlem.b | . . . . . . 7
⊢ 𝐵 = ∪
𝐶 | 
| 79 | 34 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 80 | 2 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝐺 ∈ (II Cn 𝐽)) | 
| 81 |  | cvmliftlem.p | . . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ 𝐵) | 
| 82 | 81 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑃 ∈ 𝐵) | 
| 83 |  | cvmliftlem.e | . . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | 
| 84 | 83 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → (𝐹‘𝑃) = (𝐺‘0)) | 
| 85 |  | simplr 768 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑛 ∈ ℕ) | 
| 86 |  | simprl 770 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | 
| 87 |  | sneq 4635 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑎 → {𝑗} = {𝑎}) | 
| 88 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑎 → (𝑆‘𝑗) = (𝑆‘𝑎)) | 
| 89 | 87, 88 | xpeq12d 5715 | . . . . . . . . . 10
⊢ (𝑗 = 𝑎 → ({𝑗} × (𝑆‘𝑗)) = ({𝑎} × (𝑆‘𝑎))) | 
| 90 | 89 | cbviunv 5039 | . . . . . . . . 9
⊢ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) = ∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎)) | 
| 91 |  | feq3 6717 | . . . . . . . . 9
⊢ (∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) = ∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎)) → (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ 𝑔:(1...𝑛)⟶∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎)))) | 
| 92 | 90, 91 | ax-mp 5 | . . . . . . . 8
⊢ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ 𝑔:(1...𝑛)⟶∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎))) | 
| 93 | 86, 92 | sylib 218 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → 𝑔:(1...𝑛)⟶∪
𝑎 ∈ 𝐽 ({𝑎} × (𝑆‘𝑎))) | 
| 94 |  | simprr 772 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘))) | 
| 95 |  | eqid 2736 | . . . . . . 7
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) | 
| 96 |  | 2fveq3 6910 | . . . . . . . . . . 11
⊢ (𝑡 = 𝑧 → (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)) = (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧))) | 
| 97 | 96 | cbvmptv 5254 | . . . . . . . . . 10
⊢ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧))) | 
| 98 |  | eleq2 2829 | . . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑏 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐 ↔ (𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) | 
| 99 | 98 | cbvriotavw 7399 | . . . . . . . . . . . . . . 15
⊢
(℩𝑐
∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) | 
| 100 |  | fveq1 6904 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝑦‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑤 − 1) / 𝑛))) | 
| 101 | 100 | eleq1d 2825 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) | 
| 102 | 101 | riotabidv 7391 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) | 
| 103 | 99, 102 | eqtrid 2788 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) | 
| 104 | 103 | reseq2d 5996 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))) | 
| 105 | 104 | cnveqd 5885 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))) | 
| 106 | 105 | fveq1d 6907 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧)) = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧))) | 
| 107 | 106 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑧))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) | 
| 108 | 97, 107 | eqtrid 2788 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) | 
| 109 |  | oveq1 7439 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑚 → (𝑤 − 1) = (𝑚 − 1)) | 
| 110 | 109 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑚 → ((𝑤 − 1) / 𝑛) = ((𝑚 − 1) / 𝑛)) | 
| 111 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑚 → (𝑤 / 𝑛) = (𝑚 / 𝑛)) | 
| 112 | 110, 111 | oveq12d 7450 | . . . . . . . . . 10
⊢ (𝑤 = 𝑚 → (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) = (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛))) | 
| 113 |  | 2fveq3 6910 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑚 → (2nd ‘(𝑔‘𝑤)) = (2nd ‘(𝑔‘𝑚))) | 
| 114 | 110 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑚 → (𝑥‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑚 − 1) / 𝑛))) | 
| 115 | 114 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑚 → ((𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)) | 
| 116 | 113, 115 | riotaeqbidv 7392 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑚 → (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)) | 
| 117 | 116 | reseq2d 5996 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑚 → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))) | 
| 118 | 117 | cnveqd 5885 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑚 → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))) | 
| 119 | 118 | fveq1d 6907 | . . . . . . . . . 10
⊢ (𝑤 = 𝑚 → (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)) = (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧))) | 
| 120 | 112, 119 | mpteq12dv 5232 | . . . . . . . . 9
⊢ (𝑤 = 𝑚 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧))) = (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) | 
| 121 | 108, 120 | cbvmpov 7529 | . . . . . . . 8
⊢ (𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) | 
| 122 |  | seqeq2 14047 | . . . . . . . 8
⊢ ((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))) → seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))
= seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))) | 
| 123 | 121, 122 | ax-mp 5 | . . . . . . 7
⊢
seq0((𝑦 ∈ V,
𝑤 ∈ ℕ ↦
(𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))
= seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑔‘𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) | 
| 124 |  | eqid 2736 | . . . . . . 7
⊢ ∪ 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))‘𝑘) = ∪ 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ (◡(𝐹 ↾ (℩𝑐 ∈ (2nd ‘(𝑔‘𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺‘𝑡)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉}))‘𝑘) | 
| 125 | 37, 78, 10, 79, 80, 82, 84, 85, 93, 94, 95, 123, 124 | cvmliftlem14 35303 | . . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘)))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | 
| 126 | 125 | ex 412 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) | 
| 127 | 126 | exlimdv 1932 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑔(𝑔:(1...𝑛)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔‘𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) | 
| 128 | 77, 127 | syl5 34 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) | 
| 129 | 128 | rexlimdva 3154 | . 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗 ∈ 𝐽 ∃𝑠 ∈ (𝑆‘𝑗)(𝐺 “ 𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) | 
| 130 | 54, 129 | mpd 15 | 1
⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |