Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem15 Structured version   Visualization version   GIF version

Theorem cvmliftlem15 32658
Description: Lemma for cvmlift 32659. Discharge the assumptions of cvmliftlem14 32657. The set of all open subsets 𝑢 of the unit interval such that 𝐺𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 23571, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 8746 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 32657. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
Assertion
Ref Expression
cvmliftlem15 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Distinct variable groups:   𝑣,𝐵   𝑓,𝑘,𝑠,𝑢,𝑣,𝐹   𝑃,𝑓,𝑘,𝑢,𝑣   𝐶,𝑓,𝑘,𝑠,𝑢,𝑣   𝜑,𝑓,𝑠   𝑆,𝑓,𝑘,𝑠,𝑢,𝑣   𝑓,𝐺,𝑘,𝑠,𝑢,𝑣   𝑓,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑠)   𝑋(𝑣,𝑢,𝑓,𝑘,𝑠)

Proof of Theorem cvmliftlem15
Dummy variables 𝑏 𝑦 𝑧 𝑎 𝑐 𝑔 𝑗 𝑚 𝑛 𝑡 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4007 . . 3 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II
2 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
32ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝐺 ∈ (II Cn 𝐽))
4 simprl 770 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑗𝐽)
5 cnima 21870 . . . . . . . . . 10 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑗𝐽) → (𝐺𝑗) ∈ II)
63, 4, 5syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺𝑗) ∈ II)
7 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑥 ∈ (0[,]1))
8 simprrl 780 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺𝑥) ∈ 𝑗)
9 iiuni 23486 . . . . . . . . . . . . . 14 (0[,]1) = II
10 cvmliftlem.x . . . . . . . . . . . . . 14 𝑋 = 𝐽
119, 10cnf 21851 . . . . . . . . . . . . 13 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
122, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐺:(0[,]1)⟶𝑋)
1312ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝐺:(0[,]1)⟶𝑋)
14 ffn 6487 . . . . . . . . . . 11 (𝐺:(0[,]1)⟶𝑋𝐺 Fn (0[,]1))
15 elpreima 6805 . . . . . . . . . . 11 (𝐺 Fn (0[,]1) → (𝑥 ∈ (𝐺𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺𝑥) ∈ 𝑗)))
1613, 14, 153syl 18 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝑥 ∈ (𝐺𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺𝑥) ∈ 𝑗)))
177, 8, 16mpbir2and 712 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑥 ∈ (𝐺𝑗))
18 simprrr 781 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝑆𝑗) ≠ ∅)
19 ffun 6490 . . . . . . . . . . . . 13 (𝐺:(0[,]1)⟶𝑋 → Fun 𝐺)
20 funimacnv 6405 . . . . . . . . . . . . 13 (Fun 𝐺 → (𝐺 “ (𝐺𝑗)) = (𝑗 ∩ ran 𝐺))
2113, 19, 203syl 18 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺 “ (𝐺𝑗)) = (𝑗 ∩ ran 𝐺))
22 inss1 4155 . . . . . . . . . . . 12 (𝑗 ∩ ran 𝐺) ⊆ 𝑗
2321, 22eqsstrdi 3969 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
2423ralrimivw 3150 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∀𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
25 r19.2z 4398 . . . . . . . . . 10 (((𝑆𝑗) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗) → ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
2618, 24, 25syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
27 eleq2 2878 . . . . . . . . . . 11 (𝑢 = (𝐺𝑗) → (𝑥𝑢𝑥 ∈ (𝐺𝑗)))
28 imaeq2 5892 . . . . . . . . . . . . 13 (𝑢 = (𝐺𝑗) → (𝐺𝑢) = (𝐺 “ (𝐺𝑗)))
2928sseq1d 3946 . . . . . . . . . . . 12 (𝑢 = (𝐺𝑗) → ((𝐺𝑢) ⊆ 𝑗 ↔ (𝐺 “ (𝐺𝑗)) ⊆ 𝑗))
3029rexbidv 3256 . . . . . . . . . . 11 (𝑢 = (𝐺𝑗) → (∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗 ↔ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗))
3127, 30anbi12d 633 . . . . . . . . . 10 (𝑢 = (𝐺𝑗) → ((𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ (𝑥 ∈ (𝐺𝑗) ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)))
3231rspcev 3571 . . . . . . . . 9 (((𝐺𝑗) ∈ II ∧ (𝑥 ∈ (𝐺𝑗) ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)) → ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
336, 17, 26, 32syl12anc 835 . . . . . . . 8 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
34 cvmliftlem.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3534adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
3612ffvelrnda 6828 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ 𝑋)
37 cvmliftlem.1 . . . . . . . . . 10 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3837, 10cvmcov 32623 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺𝑥) ∈ 𝑋) → ∃𝑗𝐽 ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))
3935, 36, 38syl2anc 587 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]1)) → ∃𝑗𝐽 ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))
4033, 39reximddv 3234 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]1)) → ∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
41 r19.42v 3303 . . . . . . . . 9 (∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
4241rexbii 3210 . . . . . . . 8 (∃𝑢 ∈ II ∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
43 rexcom 3308 . . . . . . . 8 (∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II ∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
44 elunirab 4816 . . . . . . . 8 (𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ↔ ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
4542, 43, 443bitr4i 306 . . . . . . 7 (∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
4640, 45sylib 221 . . . . . 6 ((𝜑𝑥 ∈ (0[,]1)) → 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
4746ex 416 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1) → 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗}))
4847ssrdv 3921 . . . 4 (𝜑 → (0[,]1) ⊆ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
49 uniss 4808 . . . . . 6 ({𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II → {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II)
501, 49mp1i 13 . . . . 5 (𝜑 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II)
5150, 9sseqtrrdi 3966 . . . 4 (𝜑 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ (0[,]1))
5248, 51eqssd 3932 . . 3 (𝜑 → (0[,]1) = {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
53 lebnumii 23571 . . 3 (({𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II ∧ (0[,]1) = {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗}) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)
541, 52, 53sylancr 590 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)
55 fzfi 13335 . . . . 5 (1...𝑛) ∈ Fin
56 imaeq2 5892 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝐺𝑢) = (𝐺𝑣))
5756sseq1d 3946 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝐺𝑢) ⊆ 𝑗 ↔ (𝐺𝑣) ⊆ 𝑗))
58572rexbidv 3259 . . . . . . . 8 (𝑢 = 𝑣 → (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗 ↔ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗))
5958rexrab 3635 . . . . . . 7 (∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 ↔ ∃𝑣 ∈ II (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣))
60 vex 3444 . . . . . . . . . . . . 13 𝑗 ∈ V
61 vex 3444 . . . . . . . . . . . . 13 𝑠 ∈ V
6260, 61op1std 7681 . . . . . . . . . . . 12 (𝑢 = ⟨𝑗, 𝑠⟩ → (1st𝑢) = 𝑗)
6362sseq2d 3947 . . . . . . . . . . 11 (𝑢 = ⟨𝑗, 𝑠⟩ → ((𝐺𝑣) ⊆ (1st𝑢) ↔ (𝐺𝑣) ⊆ 𝑗))
6463rexiunxp 5675 . . . . . . . . . 10 (∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺𝑣) ⊆ (1st𝑢) ↔ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗)
65 imass2 5932 . . . . . . . . . . . 12 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺𝑣))
66 sstr2 3922 . . . . . . . . . . . 12 ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺𝑣) → ((𝐺𝑣) ⊆ (1st𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6765, 66syl 17 . . . . . . . . . . 11 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ((𝐺𝑣) ⊆ (1st𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6867reximdv 3232 . . . . . . . . . 10 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺𝑣) ⊆ (1st𝑢) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6964, 68syl5bir 246 . . . . . . . . 9 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
7069impcom 411 . . . . . . . 8 ((∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7170rexlimivw 3241 . . . . . . 7 (∃𝑣 ∈ II (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7259, 71sylbi 220 . . . . . 6 (∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7372ralimi 3128 . . . . 5 (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∀𝑘 ∈ (1...𝑛)∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
74 fveq2 6645 . . . . . . 7 (𝑢 = (𝑔𝑘) → (1st𝑢) = (1st ‘(𝑔𝑘)))
7574sseq2d 3947 . . . . . 6 (𝑢 = (𝑔𝑘) → ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢) ↔ (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
7675ac6sfi 8746 . . . . 5 (((1...𝑛) ∈ Fin ∧ ∀𝑘 ∈ (1...𝑛)∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)) → ∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
7755, 73, 76sylancr 590 . . . 4 (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
78 cvmliftlem.b . . . . . . 7 𝐵 = 𝐶
7934ad2antrr 725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
802ad2antrr 725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝐺 ∈ (II Cn 𝐽))
81 cvmliftlem.p . . . . . . . 8 (𝜑𝑃𝐵)
8281ad2antrr 725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑃𝐵)
83 cvmliftlem.e . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8483ad2antrr 725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → (𝐹𝑃) = (𝐺‘0))
85 simplr 768 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑛 ∈ ℕ)
86 simprl 770 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
87 sneq 4535 . . . . . . . . . . 11 (𝑗 = 𝑎 → {𝑗} = {𝑎})
88 fveq2 6645 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑆𝑗) = (𝑆𝑎))
8987, 88xpeq12d 5550 . . . . . . . . . 10 (𝑗 = 𝑎 → ({𝑗} × (𝑆𝑗)) = ({𝑎} × (𝑆𝑎)))
9089cbviunv 4927 . . . . . . . . 9 𝑗𝐽 ({𝑗} × (𝑆𝑗)) = 𝑎𝐽 ({𝑎} × (𝑆𝑎))
91 feq3 6470 . . . . . . . . 9 ( 𝑗𝐽 ({𝑗} × (𝑆𝑗)) = 𝑎𝐽 ({𝑎} × (𝑆𝑎)) → (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎))))
9290, 91ax-mp 5 . . . . . . . 8 (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎)))
9386, 92sylib 221 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎)))
94 simprr 772 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))
95 eqid 2798 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
96 2fveq3 6650 . . . . . . . . . . 11 (𝑡 = 𝑧 → ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)) = ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)))
9796cbvmptv 5133 . . . . . . . . . 10 (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)))
98 eleq2 2878 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑏 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐 ↔ (𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
9998cbvriotavw 7103 . . . . . . . . . . . . . . 15 (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)
100 fveq1 6644 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑤 − 1) / 𝑛)))
101100eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
102101riotabidv 7095 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
10399, 102syl5eq 2845 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
104103reseq2d 5818 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)))
105104cnveqd 5710 . . . . . . . . . . . 12 (𝑦 = 𝑥(𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)))
106105fveq1d 6647 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))
107106mpteq2dv 5126 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
10897, 107syl5eq 2845 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
109 oveq1 7142 . . . . . . . . . . . 12 (𝑤 = 𝑚 → (𝑤 − 1) = (𝑚 − 1))
110109oveq1d 7150 . . . . . . . . . . 11 (𝑤 = 𝑚 → ((𝑤 − 1) / 𝑛) = ((𝑚 − 1) / 𝑛))
111 oveq1 7142 . . . . . . . . . . 11 (𝑤 = 𝑚 → (𝑤 / 𝑛) = (𝑚 / 𝑛))
112110, 111oveq12d 7153 . . . . . . . . . 10 (𝑤 = 𝑚 → (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) = (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)))
113 2fveq3 6650 . . . . . . . . . . . . . 14 (𝑤 = 𝑚 → (2nd ‘(𝑔𝑤)) = (2nd ‘(𝑔𝑚)))
114110fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑤 = 𝑚 → (𝑥‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑚 − 1) / 𝑛)))
115114eleq1d 2874 . . . . . . . . . . . . . 14 (𝑤 = 𝑚 → ((𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))
116113, 115riotaeqbidv 7096 . . . . . . . . . . . . 13 (𝑤 = 𝑚 → (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))
117116reseq2d 5818 . . . . . . . . . . . 12 (𝑤 = 𝑚 → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)))
118117cnveqd 5710 . . . . . . . . . . 11 (𝑤 = 𝑚(𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)))
119118fveq1d 6647 . . . . . . . . . 10 (𝑤 = 𝑚 → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))
120112, 119mpteq12dv 5115 . . . . . . . . 9 (𝑤 = 𝑚 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))) = (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
121108, 120cbvmpov 7228 . . . . . . . 8 (𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
122 seqeq2 13368 . . . . . . . 8 ((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))) → seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})) = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})))
123121, 122ax-mp 5 . . . . . . 7 seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})) = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
124 eqid 2798 . . . . . . 7 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑘) = 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑘)
12537, 78, 10, 79, 80, 82, 84, 85, 93, 94, 95, 123, 124cvmliftlem14 32657 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
126125ex 416 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
127126exlimdv 1934 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
12877, 127syl5 34 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
129128rexlimdva 3243 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
13054, 129mpd 15 1 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  ∃!wreu 3108  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525  cop 4531   cuni 4800   ciun 4881  cmpt 5110   I cid 5424   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  cima 5522  ccom 5523  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  crio 7092  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  Fincfn 8492  0cc0 10526  1c1 10527  cmin 10859   / cdiv 11286  cn 11625  (,)cioo 12726  [,]cicc 12729  ...cfz 12885  seqcseq 13364  t crest 16686  topGenctg 16703   Cn ccn 21829  Homeochmeo 22358  IIcii 23480   CovMap ccvm 32615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-cn 21832  df-cnp 21833  df-cmp 21992  df-conn 22017  df-lly 22071  df-nlly 22072  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-ii 23482  df-htpy 23575  df-phtpy 23576  df-phtpc 23597  df-pconn 32581  df-sconn 32582  df-cvm 32616
This theorem is referenced by:  cvmlift  32659
  Copyright terms: Public domain W3C validator