![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elzrhunit | Structured version Visualization version GIF version |
Description: Condition for the image by ℤRHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
Ref | Expression |
---|---|
zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
zrhker.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
elzrhunit | ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 785 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑅 ∈ DivRing) | |
2 | drngring 19109 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
3 | zrhker.1 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
4 | 3 | zrhrhm 20219 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
5 | zringbas 20183 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
6 | zrhker.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
7 | 5, 6 | rhmf 19081 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵) |
8 | ffn 6277 | . . . 4 ⊢ (𝐿:ℤ⟶𝐵 → 𝐿 Fn ℤ) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐿 Fn ℤ) |
10 | 1, 2, 9 | 3syl 18 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝐿 Fn ℤ) |
11 | simprl 789 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ ℤ) | |
12 | elsng 4410 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ {0} ↔ 𝑀 = 0)) | |
13 | 12 | necon3bbid 3035 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ {0} ↔ 𝑀 ≠ 0)) |
14 | 13 | biimpar 471 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ¬ 𝑀 ∈ {0}) |
15 | 14 | adantl 475 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ¬ 𝑀 ∈ {0}) |
16 | 11, 15 | eldifd 3808 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ (ℤ ∖ {0})) |
17 | zrhker.2 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
18 | 6, 3, 17 | zrhunitpreima 30566 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
19 | 18 | adantr 474 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
20 | 16, 19 | eleqtrrd 2908 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ (◡𝐿 “ (Unit‘𝑅))) |
21 | elpreima 6585 | . . 3 ⊢ (𝐿 Fn ℤ → (𝑀 ∈ (◡𝐿 “ (Unit‘𝑅)) ↔ (𝑀 ∈ ℤ ∧ (𝐿‘𝑀) ∈ (Unit‘𝑅)))) | |
22 | 21 | simplbda 495 | . 2 ⊢ ((𝐿 Fn ℤ ∧ 𝑀 ∈ (◡𝐿 “ (Unit‘𝑅))) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
23 | 10, 20, 22 | syl2anc 581 | 1 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2998 ∖ cdif 3794 {csn 4396 ◡ccnv 5340 “ cima 5344 Fn wfn 6117 ⟶wf 6118 ‘cfv 6122 (class class class)co 6904 0cc0 10251 ℤcz 11703 Basecbs 16221 0gc0g 16452 Ringcrg 18900 Unitcui 18992 RingHom crh 19067 DivRingcdr 19102 ℤringzring 20177 ℤRHomczrh 20207 chrcchr 20209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-inf2 8814 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-pre-sup 10329 ax-addf 10330 ax-mulf 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-oadd 7829 df-er 8008 df-map 8123 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-sup 8616 df-inf 8617 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-9 11420 df-n0 11618 df-z 11704 df-dec 11821 df-uz 11968 df-rp 12112 df-fz 12619 df-fl 12887 df-mod 12963 df-seq 13095 df-exp 13154 df-cj 14215 df-re 14216 df-im 14217 df-sqrt 14351 df-abs 14352 df-dvds 15357 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-mulr 16318 df-starv 16319 df-tset 16323 df-ple 16324 df-ds 16326 df-unif 16327 df-0g 16454 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-mhm 17687 df-grp 17778 df-minusg 17779 df-sbg 17780 df-mulg 17894 df-subg 17941 df-ghm 18008 df-od 18298 df-cmn 18547 df-mgp 18843 df-ur 18855 df-ring 18902 df-cring 18903 df-rnghom 19070 df-drng 19104 df-subrg 19133 df-cnfld 20106 df-zring 20178 df-zrh 20211 df-chr 20213 |
This theorem is referenced by: qqhghm 30576 qqhrhm 30577 qqhnm 30578 |
Copyright terms: Public domain | W3C validator |