![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elzrhunit | Structured version Visualization version GIF version |
Description: Condition for the image by β€RHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
Ref | Expression |
---|---|
zrhker.0 | β’ π΅ = (Baseβπ ) |
zrhker.1 | β’ πΏ = (β€RHomβπ ) |
zrhker.2 | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
elzrhunit | β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β (πΏβπ) β (Unitβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . 3 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β π β DivRing) | |
2 | drngring 20364 | . . 3 β’ (π β DivRing β π β Ring) | |
3 | zrhker.1 | . . . . 5 β’ πΏ = (β€RHomβπ ) | |
4 | 3 | zrhrhm 21061 | . . . 4 β’ (π β Ring β πΏ β (β€ring RingHom π )) |
5 | zringbas 21023 | . . . . 5 β’ β€ = (Baseββ€ring) | |
6 | zrhker.0 | . . . . 5 β’ π΅ = (Baseβπ ) | |
7 | 5, 6 | rhmf 20263 | . . . 4 β’ (πΏ β (β€ring RingHom π ) β πΏ:β€βΆπ΅) |
8 | ffn 6718 | . . . 4 β’ (πΏ:β€βΆπ΅ β πΏ Fn β€) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 β’ (π β Ring β πΏ Fn β€) |
10 | 1, 2, 9 | 3syl 18 | . 2 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β πΏ Fn β€) |
11 | simprl 770 | . . . 4 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β π β β€) | |
12 | elsng 4643 | . . . . . . 7 β’ (π β β€ β (π β {0} β π = 0)) | |
13 | 12 | necon3bbid 2979 | . . . . . 6 β’ (π β β€ β (Β¬ π β {0} β π β 0)) |
14 | 13 | biimpar 479 | . . . . 5 β’ ((π β β€ β§ π β 0) β Β¬ π β {0}) |
15 | 14 | adantl 483 | . . . 4 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β Β¬ π β {0}) |
16 | 11, 15 | eldifd 3960 | . . 3 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β π β (β€ β {0})) |
17 | zrhker.2 | . . . . 5 β’ 0 = (0gβπ ) | |
18 | 6, 3, 17 | zrhunitpreima 32958 | . . . 4 β’ ((π β DivRing β§ (chrβπ ) = 0) β (β‘πΏ β (Unitβπ )) = (β€ β {0})) |
19 | 18 | adantr 482 | . . 3 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β (β‘πΏ β (Unitβπ )) = (β€ β {0})) |
20 | 16, 19 | eleqtrrd 2837 | . 2 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β π β (β‘πΏ β (Unitβπ ))) |
21 | elpreima 7060 | . . 3 β’ (πΏ Fn β€ β (π β (β‘πΏ β (Unitβπ )) β (π β β€ β§ (πΏβπ) β (Unitβπ )))) | |
22 | 21 | simplbda 501 | . 2 β’ ((πΏ Fn β€ β§ π β (β‘πΏ β (Unitβπ ))) β (πΏβπ) β (Unitβπ )) |
23 | 10, 20, 22 | syl2anc 585 | 1 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β 0)) β (πΏβπ) β (Unitβπ )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 β cdif 3946 {csn 4629 β‘ccnv 5676 β cima 5680 Fn wfn 6539 βΆwf 6540 βcfv 6544 (class class class)co 7409 0cc0 11110 β€cz 12558 Basecbs 17144 0gc0g 17385 Ringcrg 20056 Unitcui 20169 RingHom crh 20248 DivRingcdr 20357 β€ringczring 21017 β€RHomczrh 21049 chrcchr 21051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-fz 13485 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-ghm 19090 df-od 19396 df-cmn 19650 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-rnghom 20251 df-subrg 20317 df-drng 20359 df-cnfld 20945 df-zring 21018 df-zrh 21053 df-chr 21055 |
This theorem is referenced by: qqhghm 32968 qqhrhm 32969 qqhnm 32970 |
Copyright terms: Public domain | W3C validator |