Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elzrhunit | Structured version Visualization version GIF version |
Description: Condition for the image by ℤRHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
Ref | Expression |
---|---|
zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
zrhker.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
elzrhunit | ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑅 ∈ DivRing) | |
2 | drngring 19567 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
3 | zrhker.1 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
4 | 3 | zrhrhm 20271 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
5 | zringbas 20234 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
6 | zrhker.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
7 | 5, 6 | rhmf 19539 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵) |
8 | ffn 6496 | . . . 4 ⊢ (𝐿:ℤ⟶𝐵 → 𝐿 Fn ℤ) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐿 Fn ℤ) |
10 | 1, 2, 9 | 3syl 18 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝐿 Fn ℤ) |
11 | simprl 771 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ ℤ) | |
12 | elsng 4534 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ {0} ↔ 𝑀 = 0)) | |
13 | 12 | necon3bbid 2989 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ {0} ↔ 𝑀 ≠ 0)) |
14 | 13 | biimpar 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ¬ 𝑀 ∈ {0}) |
15 | 14 | adantl 486 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ¬ 𝑀 ∈ {0}) |
16 | 11, 15 | eldifd 3870 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ (ℤ ∖ {0})) |
17 | zrhker.2 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
18 | 6, 3, 17 | zrhunitpreima 31437 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
19 | 18 | adantr 485 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
20 | 16, 19 | eleqtrrd 2856 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ (◡𝐿 “ (Unit‘𝑅))) |
21 | elpreima 6817 | . . 3 ⊢ (𝐿 Fn ℤ → (𝑀 ∈ (◡𝐿 “ (Unit‘𝑅)) ↔ (𝑀 ∈ ℤ ∧ (𝐿‘𝑀) ∈ (Unit‘𝑅)))) | |
22 | 21 | simplbda 504 | . 2 ⊢ ((𝐿 Fn ℤ ∧ 𝑀 ∈ (◡𝐿 “ (Unit‘𝑅))) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
23 | 10, 20, 22 | syl2anc 588 | 1 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∖ cdif 3856 {csn 4520 ◡ccnv 5521 “ cima 5525 Fn wfn 6328 ⟶wf 6329 ‘cfv 6333 (class class class)co 7148 0cc0 10565 ℤcz 12010 Basecbs 16531 0gc0g 16761 Ringcrg 19355 Unitcui 19450 RingHom crh 19525 DivRingcdr 19560 ℤringzring 20228 ℤRHomczrh 20259 chrcchr 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 ax-addf 10644 ax-mulf 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-oadd 8114 df-er 8297 df-map 8416 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-sup 8929 df-inf 8930 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-4 11729 df-5 11730 df-6 11731 df-7 11732 df-8 11733 df-9 11734 df-n0 11925 df-z 12011 df-dec 12128 df-uz 12273 df-rp 12421 df-fz 12930 df-fl 13201 df-mod 13277 df-seq 13409 df-exp 13470 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-dvds 15646 df-struct 16533 df-ndx 16534 df-slot 16535 df-base 16537 df-sets 16538 df-ress 16539 df-plusg 16626 df-mulr 16627 df-starv 16628 df-tset 16632 df-ple 16633 df-ds 16635 df-unif 16636 df-0g 16763 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-mhm 18012 df-grp 18162 df-minusg 18163 df-sbg 18164 df-mulg 18282 df-subg 18333 df-ghm 18413 df-od 18713 df-cmn 18965 df-mgp 19298 df-ur 19310 df-ring 19357 df-cring 19358 df-rnghom 19528 df-drng 19562 df-subrg 19591 df-cnfld 20157 df-zring 20229 df-zrh 20263 df-chr 20265 |
This theorem is referenced by: qqhghm 31447 qqhrhm 31448 qqhnm 31449 |
Copyright terms: Public domain | W3C validator |