Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elzrhunit | Structured version Visualization version GIF version |
Description: Condition for the image by ℤRHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
Ref | Expression |
---|---|
zrhker.0 | ⊢ 𝐵 = (Base‘𝑅) |
zrhker.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
zrhker.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
elzrhunit | ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 763 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑅 ∈ DivRing) | |
2 | drngring 19913 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
3 | zrhker.1 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
4 | 3 | zrhrhm 20625 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
5 | zringbas 20588 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
6 | zrhker.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
7 | 5, 6 | rhmf 19885 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵) |
8 | ffn 6584 | . . . 4 ⊢ (𝐿:ℤ⟶𝐵 → 𝐿 Fn ℤ) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐿 Fn ℤ) |
10 | 1, 2, 9 | 3syl 18 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝐿 Fn ℤ) |
11 | simprl 767 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ ℤ) | |
12 | elsng 4572 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ {0} ↔ 𝑀 = 0)) | |
13 | 12 | necon3bbid 2980 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ {0} ↔ 𝑀 ≠ 0)) |
14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ¬ 𝑀 ∈ {0}) |
15 | 14 | adantl 481 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ¬ 𝑀 ∈ {0}) |
16 | 11, 15 | eldifd 3894 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ (ℤ ∖ {0})) |
17 | zrhker.2 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
18 | 6, 3, 17 | zrhunitpreima 31828 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
19 | 18 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) |
20 | 16, 19 | eleqtrrd 2842 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → 𝑀 ∈ (◡𝐿 “ (Unit‘𝑅))) |
21 | elpreima 6917 | . . 3 ⊢ (𝐿 Fn ℤ → (𝑀 ∈ (◡𝐿 “ (Unit‘𝑅)) ↔ (𝑀 ∈ ℤ ∧ (𝐿‘𝑀) ∈ (Unit‘𝑅)))) | |
22 | 21 | simplbda 499 | . 2 ⊢ ((𝐿 Fn ℤ ∧ 𝑀 ∈ (◡𝐿 “ (Unit‘𝑅))) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
23 | 10, 20, 22 | syl2anc 583 | 1 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℤcz 12249 Basecbs 16840 0gc0g 17067 Ringcrg 19698 Unitcui 19796 RingHom crh 19871 DivRingcdr 19906 ℤringzring 20582 ℤRHomczrh 20613 chrcchr 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-od 19051 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-chr 20619 |
This theorem is referenced by: qqhghm 31838 qqhrhm 31839 qqhnm 31840 |
Copyright terms: Public domain | W3C validator |