Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2lem Structured version   Visualization version   GIF version

Theorem qqhval2lem 31111
Description: Lemma for qqhval2 31112. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2lem (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))

Proof of Theorem qqhval2lem
StepHypRef Expression
1 drngring 19432 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 qqhval2.2 . . . . . 6 𝐿 = (ℤRHom‘𝑅)
32zrhrhm 20578 . . . . 5 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
41, 3syl 17 . . . 4 (𝑅 ∈ DivRing → 𝐿 ∈ (ℤring RingHom 𝑅))
54ad2antrr 722 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 ∈ (ℤring RingHom 𝑅))
6 simpr1 1188 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℤ)
7 simpr2 1189 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℤ)
86, 7gcdcld 15850 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℕ0)
98nn0zd 12077 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℤ)
10 simpr3 1190 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ≠ 0)
11 gcdeq0 15858 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 ↔ (𝑋 = 0 ∧ 𝑌 = 0)))
1211simplbda 500 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) = 0) → 𝑌 = 0)
1312ex 413 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 → 𝑌 = 0))
1413necon3d 3041 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 ≠ 0 → (𝑋 gcd 𝑌) ≠ 0))
1514imp 407 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑌 ≠ 0) → (𝑋 gcd 𝑌) ≠ 0)
166, 7, 10, 15syl21anc 835 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ≠ 0)
17 gcddvds 15845 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
186, 7, 17syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
1918simpld 495 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑋)
20 dvdsval2 15603 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ↔ (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ))
2120biimpa 477 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑋) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
229, 16, 6, 19, 21syl31anc 1367 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
2318simprd 496 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑌)
24 dvdsval2 15603 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑌 ↔ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ))
2524biimpa 477 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑌) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
269, 16, 7, 23, 25syl31anc 1367 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
27 zringbas 20542 . . . . . . 7 ℤ = (Base‘ℤring)
28 qqhval2.0 . . . . . . 7 𝐵 = (Base‘𝑅)
2927, 28rhmf 19401 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
305, 29syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿:ℤ⟶𝐵)
3130, 26ffvelrnd 6847 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵)
3230ffnd 6511 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 Fn ℤ)
337zcnd 12080 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℂ)
349zcnd 12080 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℂ)
3533, 34, 10, 16divne0d 11424 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
36 ovex 7184 . . . . . . . . 9 (𝑌 / (𝑋 gcd 𝑌)) ∈ V
3736elsn 4578 . . . . . . . 8 ((𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) = 0)
3837necon3bbii 3067 . . . . . . 7 (¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
3935, 38sylibr 235 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0})
401ad2antrr 722 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑅 ∈ Ring)
41 simplr 765 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (chr‘𝑅) = 0)
42 eqid 2825 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4328, 2, 42zrhker 31107 . . . . . . . 8 (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (𝐿 “ {(0g𝑅)}) = {0}))
4443biimpa 477 . . . . . . 7 ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
4540, 41, 44syl2anc 584 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿 “ {(0g𝑅)}) = {0})
4639, 45neleqtrrd 2939 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}))
47 elpreima 6823 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})))
4847baibd 540 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)}))
4948biimprd 249 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} → (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})))
5049con3dimp 409 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})
51 fvex 6679 . . . . . . . 8 (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ V
5251elsn 4578 . . . . . . 7 ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (0g𝑅))
5352necon3bbii 3067 . . . . . 6 (¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5450, 53sylib 219 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5532, 26, 46, 54syl21anc 835 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
56 eqid 2825 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
5728, 56, 42drngunit 19430 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
5857ad2antrr 722 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
5931, 55, 58mpbir2and 709 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
6030, 9ffvelrnd 6847 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵)
61 ovex 7184 . . . . . . . . 9 (𝑋 gcd 𝑌) ∈ V
6261elsn 4578 . . . . . . . 8 ((𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) = 0)
6362necon3bbii 3067 . . . . . . 7 (¬ (𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) ≠ 0)
6416, 63sylibr 235 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ {0})
6564, 45neleqtrrd 2939 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}))
66 elpreima 6823 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})))
6766baibd 540 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)}))
6867biimprd 249 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} → (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})))
6968con3dimp 409 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})
70 fvex 6679 . . . . . . . 8 (𝐿‘(𝑋 gcd 𝑌)) ∈ V
7170elsn 4578 . . . . . . 7 ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) = (0g𝑅))
7271necon3bbii 3067 . . . . . 6 (¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7369, 72sylib 219 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7432, 9, 65, 73syl21anc 835 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7528, 56, 42drngunit 19430 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7675ad2antrr 722 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7760, 74, 76mpbir2and 709 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))
78 qqhval2.1 . . . 4 / = (/r𝑅)
79 zringmulr 20545 . . . 4 · = (.r‘ℤring)
8056, 27, 78, 79rhmdvd 30811 . . 3 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
815, 22, 26, 9, 59, 77, 80syl132anc 1382 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
82 divnumden 16081 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
836, 82sylan 580 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
8483simpld 495 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)))
8584eqcomd 2831 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) = (numer‘(𝑋 / 𝑌)))
8685fveq2d 6670 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘(numer‘(𝑋 / 𝑌))))
8783simprd 496 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌)))
8887eqcomd 2831 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) = (denom‘(𝑋 / 𝑌)))
8988fveq2d 6670 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘(denom‘(𝑋 / 𝑌))))
9086, 89oveq12d 7169 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
9122adantr 481 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
9291zcnd 12080 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℂ)
9392mulm1d 11084 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = -(𝑋 / (𝑋 gcd 𝑌)))
94 neg1cn 11743 . . . . . . . . 9 -1 ∈ ℂ
9594a1i 11 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℂ)
9695, 92mulcomd 10654 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9793, 96eqtr3d 2862 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑋 / (𝑋 gcd 𝑌)) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9897fveq2d 6670 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)))
9926adantr 481 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
10099zcnd 12080 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℂ)
101100mulm1d 11084 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = -(𝑌 / (𝑋 gcd 𝑌)))
10295, 100mulcomd 10654 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
103101, 102eqtr3d 2862 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑌 / (𝑋 gcd 𝑌)) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
104103fveq2d 6670 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1)))
10598, 104oveq12d 7169 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
1066adantr 481 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑋 ∈ ℤ)
1077adantr 481 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑌 ∈ ℤ)
108 simpr 485 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -𝑌 ∈ ℕ)
109 divnumden2 30450 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
110106, 107, 108, 109syl3anc 1365 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
111110simpld 495 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)))
112111fveq2d 6670 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(numer‘(𝑋 / 𝑌))) = (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))))
113110simprd 496 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌)))
114113fveq2d 6670 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(denom‘(𝑋 / 𝑌))) = (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))))
115112, 114oveq12d 7169 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))))
1165adantr 481 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝐿 ∈ (ℤring RingHom 𝑅))
117 1zzd 12005 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 1 ∈ ℤ)
118117znegcld 12081 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℤ)
11959adantr 481 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
120 neg1z 12010 . . . . . . . 8 -1 ∈ ℤ
121 ax-1cn 10587 . . . . . . . . . 10 1 ∈ ℂ
122121absnegi 14753 . . . . . . . . 9 (abs‘-1) = (abs‘1)
123 abs1 14650 . . . . . . . . 9 (abs‘1) = 1
124122, 123eqtri 2848 . . . . . . . 8 (abs‘-1) = 1
125 zringunit 20554 . . . . . . . 8 (-1 ∈ (Unit‘ℤring) ↔ (-1 ∈ ℤ ∧ (abs‘-1) = 1))
126120, 124, 125mpbir2an 707 . . . . . . 7 -1 ∈ (Unit‘ℤring)
127126a1i 11 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ (Unit‘ℤring))
128 elrhmunit 30810 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ -1 ∈ (Unit‘ℤring)) → (𝐿‘-1) ∈ (Unit‘𝑅))
129116, 127, 128syl2anc 584 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-1) ∈ (Unit‘𝑅))
13056, 27, 78, 79rhmdvd 30811 . . . . 5 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘-1) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
131116, 91, 99, 118, 119, 129, 130syl132anc 1382 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
132105, 115, 1313eqtr4rd 2871 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
133 simp3 1132 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ≠ 0)
134133neneqd 3025 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ¬ 𝑌 = 0)
135 simp2 1131 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ)
136 elz 11975 . . . . . . . 8 (𝑌 ∈ ℤ ↔ (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
137135, 136sylib 219 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
138137simprd 496 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
139 3orass 1084 . . . . . 6 ((𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ) ↔ (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
140138, 139sylib 219 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
141 orel1 884 . . . . 5 𝑌 = 0 → ((𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
142134, 140, 141sylc 65 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
143142adantl 482 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
14490, 132, 143mpjaodan 954 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
1456zcnd 12080 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℂ)
146145, 34, 16divcan1d 11409 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑋)
147146fveq2d 6670 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑋))
14833, 34, 16divcan1d 11409 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑌)
149148fveq2d 6670 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑌))
150147, 149oveq12d 7169 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
15181, 144, 1503eqtr3d 2868 1 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3o 1080  w3a 1081   = wceq 1530  wcel 2107  wne 3020  {csn 4563   class class class wbr 5062  ccnv 5552  cima 5556   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   · cmul 10534  -cneg 10863   / cdiv 11289  cn 11630  cz 11973  abscabs 14586  cdvds 15600   gcd cgcd 15836  numercnumer 16066  denomcdenom 16067  Basecbs 16476  0gc0g 16706  Ringcrg 19220  Unitcui 19312  /rcdvr 19355   RingHom crh 19387  DivRingcdr 19425  ringzring 20536  ℤRHomczrh 20566  chrcchr 20568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-fz 12886  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15601  df-gcd 15837  df-numer 16068  df-denom 16069  df-gz 16259  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-0g 16708  df-mgm 17845  df-sgrp 17893  df-mnd 17904  df-mhm 17947  df-grp 18039  df-minusg 18040  df-sbg 18041  df-mulg 18158  df-subg 18209  df-ghm 18289  df-od 18579  df-cmn 18831  df-mgp 19163  df-ur 19175  df-ring 19222  df-cring 19223  df-oppr 19296  df-dvdsr 19314  df-unit 19315  df-invr 19345  df-dvr 19356  df-rnghom 19390  df-drng 19427  df-subrg 19456  df-cnfld 20465  df-zring 20537  df-zrh 20570  df-chr 20572
This theorem is referenced by:  qqhval2  31112  qqhvq  31117
  Copyright terms: Public domain W3C validator