Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2lem Structured version   Visualization version   GIF version

Theorem qqhval2lem 34017
Description: Lemma for qqhval2 34018. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2lem (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))

Proof of Theorem qqhval2lem
StepHypRef Expression
1 drngring 20701 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 qqhval2.2 . . . . . 6 𝐿 = (ℤRHom‘𝑅)
32zrhrhm 21477 . . . . 5 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
41, 3syl 17 . . . 4 (𝑅 ∈ DivRing → 𝐿 ∈ (ℤring RingHom 𝑅))
54ad2antrr 726 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 ∈ (ℤring RingHom 𝑅))
6 simpr1 1195 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℤ)
7 simpr2 1196 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℤ)
86, 7gcdcld 16532 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℕ0)
98nn0zd 12619 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℤ)
10 simpr3 1197 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ≠ 0)
11 gcdeq0 16541 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 ↔ (𝑋 = 0 ∧ 𝑌 = 0)))
1211simplbda 499 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) = 0) → 𝑌 = 0)
1312ex 412 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 → 𝑌 = 0))
1413necon3d 2954 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 ≠ 0 → (𝑋 gcd 𝑌) ≠ 0))
1514imp 406 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑌 ≠ 0) → (𝑋 gcd 𝑌) ≠ 0)
166, 7, 10, 15syl21anc 837 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ≠ 0)
17 gcddvds 16527 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
186, 7, 17syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
1918simpld 494 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑋)
20 dvdsval2 16280 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ↔ (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ))
2120biimpa 476 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑋) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
229, 16, 6, 19, 21syl31anc 1375 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
2318simprd 495 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑌)
24 dvdsval2 16280 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑌 ↔ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ))
2524biimpa 476 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑌) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
269, 16, 7, 23, 25syl31anc 1375 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
27 zringbas 21419 . . . . . . 7 ℤ = (Base‘ℤring)
28 qqhval2.0 . . . . . . 7 𝐵 = (Base‘𝑅)
2927, 28rhmf 20450 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
305, 29syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿:ℤ⟶𝐵)
3130, 26ffvelcdmd 7080 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵)
3230ffnd 6712 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 Fn ℤ)
337zcnd 12703 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℂ)
349zcnd 12703 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℂ)
3533, 34, 10, 16divne0d 12038 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
36 ovex 7443 . . . . . . . . 9 (𝑌 / (𝑋 gcd 𝑌)) ∈ V
3736elsn 4621 . . . . . . . 8 ((𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) = 0)
3837necon3bbii 2980 . . . . . . 7 (¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
3935, 38sylibr 234 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0})
401ad2antrr 726 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑅 ∈ Ring)
41 simplr 768 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (chr‘𝑅) = 0)
42 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4328, 2, 42zrhker 34011 . . . . . . . 8 (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (𝐿 “ {(0g𝑅)}) = {0}))
4443biimpa 476 . . . . . . 7 ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
4540, 41, 44syl2anc 584 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿 “ {(0g𝑅)}) = {0})
4639, 45neleqtrrd 2858 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}))
47 elpreima 7053 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})))
4847baibd 539 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)}))
4948biimprd 248 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} → (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})))
5049con3dimp 408 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})
51 fvex 6894 . . . . . . . 8 (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ V
5251elsn 4621 . . . . . . 7 ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (0g𝑅))
5352necon3bbii 2980 . . . . . 6 (¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5450, 53sylib 218 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5532, 26, 46, 54syl21anc 837 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
56 eqid 2736 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
5728, 56, 42drngunit 20699 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
5857ad2antrr 726 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
5931, 55, 58mpbir2and 713 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
6030, 9ffvelcdmd 7080 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵)
61 ovex 7443 . . . . . . . . 9 (𝑋 gcd 𝑌) ∈ V
6261elsn 4621 . . . . . . . 8 ((𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) = 0)
6362necon3bbii 2980 . . . . . . 7 (¬ (𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) ≠ 0)
6416, 63sylibr 234 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ {0})
6564, 45neleqtrrd 2858 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}))
66 elpreima 7053 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})))
6766baibd 539 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)}))
6867biimprd 248 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} → (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})))
6968con3dimp 408 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})
70 fvex 6894 . . . . . . . 8 (𝐿‘(𝑋 gcd 𝑌)) ∈ V
7170elsn 4621 . . . . . . 7 ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) = (0g𝑅))
7271necon3bbii 2980 . . . . . 6 (¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7369, 72sylib 218 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7432, 9, 65, 73syl21anc 837 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7528, 56, 42drngunit 20699 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7675ad2antrr 726 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7760, 74, 76mpbir2and 713 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))
78 qqhval2.1 . . . 4 / = (/r𝑅)
79 zringmulr 21423 . . . 4 · = (.r‘ℤring)
8056, 27, 78, 79rhmdvd 33345 . . 3 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
815, 22, 26, 9, 59, 77, 80syl132anc 1390 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
82 divnumden 16772 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
836, 82sylan 580 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
8483simpld 494 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)))
8584eqcomd 2742 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) = (numer‘(𝑋 / 𝑌)))
8685fveq2d 6885 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘(numer‘(𝑋 / 𝑌))))
8783simprd 495 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌)))
8887eqcomd 2742 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) = (denom‘(𝑋 / 𝑌)))
8988fveq2d 6885 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘(denom‘(𝑋 / 𝑌))))
9086, 89oveq12d 7428 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
9122adantr 480 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
9291zcnd 12703 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℂ)
9392mulm1d 11694 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = -(𝑋 / (𝑋 gcd 𝑌)))
94 neg1cn 12359 . . . . . . . . 9 -1 ∈ ℂ
9594a1i 11 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℂ)
9695, 92mulcomd 11261 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9793, 96eqtr3d 2773 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑋 / (𝑋 gcd 𝑌)) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9897fveq2d 6885 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)))
9926adantr 480 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
10099zcnd 12703 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℂ)
101100mulm1d 11694 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = -(𝑌 / (𝑋 gcd 𝑌)))
10295, 100mulcomd 11261 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
103101, 102eqtr3d 2773 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑌 / (𝑋 gcd 𝑌)) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
104103fveq2d 6885 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1)))
10598, 104oveq12d 7428 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
1066adantr 480 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑋 ∈ ℤ)
1077adantr 480 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑌 ∈ ℤ)
108 simpr 484 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -𝑌 ∈ ℕ)
109 divnumden2 32799 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
110106, 107, 108, 109syl3anc 1373 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
111110simpld 494 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)))
112111fveq2d 6885 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(numer‘(𝑋 / 𝑌))) = (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))))
113110simprd 495 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌)))
114113fveq2d 6885 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(denom‘(𝑋 / 𝑌))) = (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))))
115112, 114oveq12d 7428 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))))
1165adantr 480 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝐿 ∈ (ℤring RingHom 𝑅))
117 1zzd 12628 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 1 ∈ ℤ)
118117znegcld 12704 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℤ)
11959adantr 480 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
120 neg1z 12633 . . . . . . . 8 -1 ∈ ℤ
121 ax-1cn 11192 . . . . . . . . . 10 1 ∈ ℂ
122121absnegi 15424 . . . . . . . . 9 (abs‘-1) = (abs‘1)
123 abs1 15321 . . . . . . . . 9 (abs‘1) = 1
124122, 123eqtri 2759 . . . . . . . 8 (abs‘-1) = 1
125 zringunit 21432 . . . . . . . 8 (-1 ∈ (Unit‘ℤring) ↔ (-1 ∈ ℤ ∧ (abs‘-1) = 1))
126120, 124, 125mpbir2an 711 . . . . . . 7 -1 ∈ (Unit‘ℤring)
127126a1i 11 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ (Unit‘ℤring))
128 elrhmunit 20475 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ -1 ∈ (Unit‘ℤring)) → (𝐿‘-1) ∈ (Unit‘𝑅))
129116, 127, 128syl2anc 584 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-1) ∈ (Unit‘𝑅))
13056, 27, 78, 79rhmdvd 33345 . . . . 5 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘-1) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
131116, 91, 99, 118, 119, 129, 130syl132anc 1390 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
132105, 115, 1313eqtr4rd 2782 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
133 simp3 1138 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ≠ 0)
134133neneqd 2938 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ¬ 𝑌 = 0)
135 simp2 1137 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ)
136 elz 12595 . . . . . . . 8 (𝑌 ∈ ℤ ↔ (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
137135, 136sylib 218 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
138137simprd 495 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
139 3orass 1089 . . . . . 6 ((𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ) ↔ (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
140138, 139sylib 218 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
141 orel1 888 . . . . 5 𝑌 = 0 → ((𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
142134, 140, 141sylc 65 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
143142adantl 481 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
14490, 132, 143mpjaodan 960 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
1456zcnd 12703 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℂ)
146145, 34, 16divcan1d 12023 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑋)
147146fveq2d 6885 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑋))
14833, 34, 16divcan1d 12023 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑌)
149148fveq2d 6885 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑌))
150147, 149oveq12d 7428 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
15181, 144, 1503eqtr3d 2779 1 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {csn 4606   class class class wbr 5124  ccnv 5658  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139  -cneg 11472   / cdiv 11899  cn 12245  cz 12593  abscabs 15258  cdvds 16277   gcd cgcd 16518  numercnumer 16757  denomcdenom 16758  Basecbs 17233  0gc0g 17458  Ringcrg 20198  Unitcui 20320  /rcdvr 20365   RingHom crh 20434  DivRingcdr 20694  ringczring 21412  ℤRHomczrh 21465  chrcchr 21467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-numer 16759  df-denom 16760  df-gz 16955  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-chr 21471
This theorem is referenced by:  qqhval2  34018  qqhvq  34023
  Copyright terms: Public domain W3C validator