Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2lem Structured version   Visualization version   GIF version

Theorem qqhval2lem 31217
Description: Lemma for qqhval2 31218. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2lem (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))

Proof of Theorem qqhval2lem
StepHypRef Expression
1 drngring 19503 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 qqhval2.2 . . . . . 6 𝐿 = (ℤRHom‘𝑅)
32zrhrhm 20653 . . . . 5 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
41, 3syl 17 . . . 4 (𝑅 ∈ DivRing → 𝐿 ∈ (ℤring RingHom 𝑅))
54ad2antrr 724 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 ∈ (ℤring RingHom 𝑅))
6 simpr1 1190 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℤ)
7 simpr2 1191 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℤ)
86, 7gcdcld 15851 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℕ0)
98nn0zd 12079 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℤ)
10 simpr3 1192 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ≠ 0)
11 gcdeq0 15859 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 ↔ (𝑋 = 0 ∧ 𝑌 = 0)))
1211simplbda 502 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) = 0) → 𝑌 = 0)
1312ex 415 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 → 𝑌 = 0))
1413necon3d 3037 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 ≠ 0 → (𝑋 gcd 𝑌) ≠ 0))
1514imp 409 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑌 ≠ 0) → (𝑋 gcd 𝑌) ≠ 0)
166, 7, 10, 15syl21anc 835 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ≠ 0)
17 gcddvds 15846 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
186, 7, 17syl2anc 586 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
1918simpld 497 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑋)
20 dvdsval2 15604 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ↔ (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ))
2120biimpa 479 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑋) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
229, 16, 6, 19, 21syl31anc 1369 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
2318simprd 498 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑌)
24 dvdsval2 15604 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑌 ↔ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ))
2524biimpa 479 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑌) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
269, 16, 7, 23, 25syl31anc 1369 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
27 zringbas 20617 . . . . . . 7 ℤ = (Base‘ℤring)
28 qqhval2.0 . . . . . . 7 𝐵 = (Base‘𝑅)
2927, 28rhmf 19472 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
305, 29syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿:ℤ⟶𝐵)
3130, 26ffvelrnd 6846 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵)
3230ffnd 6509 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 Fn ℤ)
337zcnd 12082 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℂ)
349zcnd 12082 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℂ)
3533, 34, 10, 16divne0d 11426 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
36 ovex 7183 . . . . . . . . 9 (𝑌 / (𝑋 gcd 𝑌)) ∈ V
3736elsn 4575 . . . . . . . 8 ((𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) = 0)
3837necon3bbii 3063 . . . . . . 7 (¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
3935, 38sylibr 236 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0})
401ad2antrr 724 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑅 ∈ Ring)
41 simplr 767 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (chr‘𝑅) = 0)
42 eqid 2821 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4328, 2, 42zrhker 31213 . . . . . . . 8 (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (𝐿 “ {(0g𝑅)}) = {0}))
4443biimpa 479 . . . . . . 7 ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
4540, 41, 44syl2anc 586 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿 “ {(0g𝑅)}) = {0})
4639, 45neleqtrrd 2935 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}))
47 elpreima 6822 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})))
4847baibd 542 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)}))
4948biimprd 250 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} → (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})))
5049con3dimp 411 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})
51 fvex 6677 . . . . . . . 8 (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ V
5251elsn 4575 . . . . . . 7 ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (0g𝑅))
5352necon3bbii 3063 . . . . . 6 (¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5450, 53sylib 220 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5532, 26, 46, 54syl21anc 835 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
56 eqid 2821 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
5728, 56, 42drngunit 19501 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
5857ad2antrr 724 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
5931, 55, 58mpbir2and 711 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
6030, 9ffvelrnd 6846 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵)
61 ovex 7183 . . . . . . . . 9 (𝑋 gcd 𝑌) ∈ V
6261elsn 4575 . . . . . . . 8 ((𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) = 0)
6362necon3bbii 3063 . . . . . . 7 (¬ (𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) ≠ 0)
6416, 63sylibr 236 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ {0})
6564, 45neleqtrrd 2935 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}))
66 elpreima 6822 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})))
6766baibd 542 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)}))
6867biimprd 250 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} → (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})))
6968con3dimp 411 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})
70 fvex 6677 . . . . . . . 8 (𝐿‘(𝑋 gcd 𝑌)) ∈ V
7170elsn 4575 . . . . . . 7 ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) = (0g𝑅))
7271necon3bbii 3063 . . . . . 6 (¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7369, 72sylib 220 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7432, 9, 65, 73syl21anc 835 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7528, 56, 42drngunit 19501 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7675ad2antrr 724 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7760, 74, 76mpbir2and 711 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))
78 qqhval2.1 . . . 4 / = (/r𝑅)
79 zringmulr 20620 . . . 4 · = (.r‘ℤring)
8056, 27, 78, 79rhmdvd 30889 . . 3 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
815, 22, 26, 9, 59, 77, 80syl132anc 1384 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
82 divnumden 16082 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
836, 82sylan 582 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
8483simpld 497 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)))
8584eqcomd 2827 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) = (numer‘(𝑋 / 𝑌)))
8685fveq2d 6668 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘(numer‘(𝑋 / 𝑌))))
8783simprd 498 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌)))
8887eqcomd 2827 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) = (denom‘(𝑋 / 𝑌)))
8988fveq2d 6668 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘(denom‘(𝑋 / 𝑌))))
9086, 89oveq12d 7168 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
9122adantr 483 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
9291zcnd 12082 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℂ)
9392mulm1d 11086 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = -(𝑋 / (𝑋 gcd 𝑌)))
94 neg1cn 11745 . . . . . . . . 9 -1 ∈ ℂ
9594a1i 11 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℂ)
9695, 92mulcomd 10656 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9793, 96eqtr3d 2858 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑋 / (𝑋 gcd 𝑌)) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9897fveq2d 6668 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)))
9926adantr 483 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
10099zcnd 12082 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℂ)
101100mulm1d 11086 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = -(𝑌 / (𝑋 gcd 𝑌)))
10295, 100mulcomd 10656 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
103101, 102eqtr3d 2858 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑌 / (𝑋 gcd 𝑌)) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
104103fveq2d 6668 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1)))
10598, 104oveq12d 7168 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
1066adantr 483 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑋 ∈ ℤ)
1077adantr 483 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑌 ∈ ℤ)
108 simpr 487 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -𝑌 ∈ ℕ)
109 divnumden2 30528 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
110106, 107, 108, 109syl3anc 1367 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
111110simpld 497 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)))
112111fveq2d 6668 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(numer‘(𝑋 / 𝑌))) = (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))))
113110simprd 498 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌)))
114113fveq2d 6668 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(denom‘(𝑋 / 𝑌))) = (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))))
115112, 114oveq12d 7168 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))))
1165adantr 483 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝐿 ∈ (ℤring RingHom 𝑅))
117 1zzd 12007 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 1 ∈ ℤ)
118117znegcld 12083 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℤ)
11959adantr 483 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
120 neg1z 12012 . . . . . . . 8 -1 ∈ ℤ
121 ax-1cn 10589 . . . . . . . . . 10 1 ∈ ℂ
122121absnegi 14754 . . . . . . . . 9 (abs‘-1) = (abs‘1)
123 abs1 14651 . . . . . . . . 9 (abs‘1) = 1
124122, 123eqtri 2844 . . . . . . . 8 (abs‘-1) = 1
125 zringunit 20629 . . . . . . . 8 (-1 ∈ (Unit‘ℤring) ↔ (-1 ∈ ℤ ∧ (abs‘-1) = 1))
126120, 124, 125mpbir2an 709 . . . . . . 7 -1 ∈ (Unit‘ℤring)
127126a1i 11 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ (Unit‘ℤring))
128 elrhmunit 30888 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ -1 ∈ (Unit‘ℤring)) → (𝐿‘-1) ∈ (Unit‘𝑅))
129116, 127, 128syl2anc 586 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-1) ∈ (Unit‘𝑅))
13056, 27, 78, 79rhmdvd 30889 . . . . 5 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘-1) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
131116, 91, 99, 118, 119, 129, 130syl132anc 1384 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
132105, 115, 1313eqtr4rd 2867 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
133 simp3 1134 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ≠ 0)
134133neneqd 3021 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ¬ 𝑌 = 0)
135 simp2 1133 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ)
136 elz 11977 . . . . . . . 8 (𝑌 ∈ ℤ ↔ (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
137135, 136sylib 220 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
138137simprd 498 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
139 3orass 1086 . . . . . 6 ((𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ) ↔ (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
140138, 139sylib 220 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
141 orel1 885 . . . . 5 𝑌 = 0 → ((𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
142134, 140, 141sylc 65 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
143142adantl 484 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
14490, 132, 143mpjaodan 955 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
1456zcnd 12082 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℂ)
146145, 34, 16divcan1d 11411 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑋)
147146fveq2d 6668 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑋))
14833, 34, 16divcan1d 11411 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑌)
149148fveq2d 6668 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑌))
150147, 149oveq12d 7168 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
15181, 144, 1503eqtr3d 2864 1 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1533  wcel 2110  wne 3016  {csn 4560   class class class wbr 5058  ccnv 5548  cima 5552   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   · cmul 10536  -cneg 10865   / cdiv 11291  cn 11632  cz 11975  abscabs 14587  cdvds 15601   gcd cgcd 15837  numercnumer 16067  denomcdenom 16068  Basecbs 16477  0gc0g 16707  Ringcrg 19291  Unitcui 19383  /rcdvr 19426   RingHom crh 19458  DivRingcdr 19496  ringzring 20611  ℤRHomczrh 20641  chrcchr 20643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-numer 16069  df-denom 16070  df-gz 16260  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-od 18650  df-cmn 18902  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-subrg 19527  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-chr 20647
This theorem is referenced by:  qqhval2  31218  qqhvq  31223
  Copyright terms: Public domain W3C validator