Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2 Structured version   Visualization version   GIF version

Theorem qqhval2 30351
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Distinct variable groups:   / ,𝑞   𝐵,𝑞   𝐿,𝑞   𝑅,𝑞

Proof of Theorem qqhval2
Dummy variables 𝑒 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3406 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ V)
21adantr 468 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ V)
3 qqhval2.1 . . . 4 / = (/r𝑅)
4 eqid 2806 . . . 4 (1r𝑅) = (1r𝑅)
5 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
63, 4, 5qqhval 30343 . . 3 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
72, 6syl 17 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
8 eqidd 2807 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ℤ = ℤ)
9 qqhval2.0 . . . . 5 𝐵 = (Base‘𝑅)
10 eqid 2806 . . . . 5 (0g𝑅) = (0g𝑅)
119, 5, 10zrhunitpreima 30347 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0}))
12 mpt2eq12 6945 . . . 4 ((ℤ = ℤ ∧ (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
138, 11, 12syl2anc 575 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1413rneqd 5554 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
15 nfv 2005 . . . 4 𝑒(𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0)
16 nfab1 2950 . . . 4 𝑒{𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
17 nfcv 2948 . . . 4 𝑒{⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
18 simpr 473 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
19 zssq 12014 . . . . . . . . . . . 12 ℤ ⊆ ℚ
20 simplrl 786 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℤ)
2119, 20sseldi 3796 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℚ)
22 simplrr 787 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ (ℤ ∖ {0}))
2322eldifad 3781 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℤ)
2419, 23sseldi 3796 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℚ)
2522eldifbd 3782 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ¬ 𝑦 ∈ {0})
26 velsn 4386 . . . . . . . . . . . . 13 (𝑦 ∈ {0} ↔ 𝑦 = 0)
2726necon3bbii 3025 . . . . . . . . . . . 12 𝑦 ∈ {0} ↔ 𝑦 ≠ 0)
2825, 27sylib 209 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ≠ 0)
29 qdivcl 12028 . . . . . . . . . . 11 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) ∈ ℚ)
3021, 24, 28, 29syl3anc 1483 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (𝑥 / 𝑦) ∈ ℚ)
31 simplll 782 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑅 ∈ DivRing)
32 simpllr 784 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (chr‘𝑅) = 0)
339, 3, 5qqhval2lem 30350 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))) = ((𝐿𝑥) / (𝐿𝑦)))
3433eqcomd 2812 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
3531, 32, 20, 23, 28, 34syl23anc 1489 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
36 ovex 6906 . . . . . . . . . . 11 (𝑥 / 𝑦) ∈ V
37 ovex 6906 . . . . . . . . . . 11 ((𝐿𝑥) / (𝐿𝑦)) ∈ V
38 opeq12 4597 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ⟨𝑞, 𝑠⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
3938eqeq2d 2816 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑒 = ⟨𝑞, 𝑠⟩ ↔ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
40 simpl 470 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑞 = (𝑥 / 𝑦))
4140eleq1d 2870 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑞 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
42 simpr 473 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑠 = ((𝐿𝑥) / (𝐿𝑦)))
4340fveq2d 6412 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (numer‘𝑞) = (numer‘(𝑥 / 𝑦)))
4443fveq2d 6412 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(numer‘𝑞)) = (𝐿‘(numer‘(𝑥 / 𝑦))))
4540fveq2d 6412 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (denom‘𝑞) = (denom‘(𝑥 / 𝑦)))
4645fveq2d 6412 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(denom‘𝑞)) = (𝐿‘(denom‘(𝑥 / 𝑦))))
4744, 46oveq12d 6892 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
4842, 47eqeq12d 2821 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ↔ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))
4941, 48anbi12d 618 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))))
5039, 49anbi12d 618 . . . . . . . . . . 11 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) ↔ (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))))
5136, 37, 50spc2ev 3494 . . . . . . . . . 10 ((𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5218, 30, 35, 51syl12anc 856 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5352ex 399 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5453rexlimdvva 3226 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5554imp 395 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
56 19.42vv 2046 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) ↔ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
57 simprrl 790 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 ∈ ℚ)
58 qnumcl 15665 . . . . . . . . . 10 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
5957, 58syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (numer‘𝑞) ∈ ℤ)
60 qdencl 15666 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
6157, 60syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℕ)
6261nnzd 11747 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℤ)
63 nnne0 11339 . . . . . . . . . . 11 ((denom‘𝑞) ∈ ℕ → (denom‘𝑞) ≠ 0)
64 nelsn 4406 . . . . . . . . . . 11 ((denom‘𝑞) ≠ 0 → ¬ (denom‘𝑞) ∈ {0})
6561, 63, 643syl 18 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ¬ (denom‘𝑞) ∈ {0})
6662, 65eldifd 3780 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
67 simprl 778 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨𝑞, 𝑠⟩)
68 qeqnumdivden 15671 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6957, 68syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
70 simprrr 791 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
7169, 70opeq12d 4603 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ⟨𝑞, 𝑠⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
7267, 71eqtrd 2840 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
73 oveq1 6881 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → (𝑥 / 𝑦) = ((numer‘𝑞) / 𝑦))
74 fveq2 6408 . . . . . . . . . . . . 13 (𝑥 = (numer‘𝑞) → (𝐿𝑥) = (𝐿‘(numer‘𝑞)))
7574oveq1d 6889 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)))
7673, 75opeq12d 4603 . . . . . . . . . . 11 (𝑥 = (numer‘𝑞) → ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩)
7776eqeq2d 2816 . . . . . . . . . 10 (𝑥 = (numer‘𝑞) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩))
78 oveq2 6882 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((numer‘𝑞) / 𝑦) = ((numer‘𝑞) / (denom‘𝑞)))
79 fveq2 6408 . . . . . . . . . . . . 13 (𝑦 = (denom‘𝑞) → (𝐿𝑦) = (𝐿‘(denom‘𝑞)))
8079oveq2d 6890 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
8178, 80opeq12d 4603 . . . . . . . . . . 11 (𝑦 = (denom‘𝑞) → ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
8281eqeq2d 2816 . . . . . . . . . 10 (𝑦 = (denom‘𝑞) → (𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩))
8377, 82rspc2ev 3517 . . . . . . . . 9 (((numer‘𝑞) ∈ ℤ ∧ (denom‘𝑞) ∈ (ℤ ∖ {0}) ∧ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8459, 66, 72, 83syl3anc 1483 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8584exlimivv 2023 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8656, 85sylbir 226 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8755, 86impbida 826 . . . . 5 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
88 abid 2794 . . . . 5 (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
89 elopab 5178 . . . . 5 (𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))} ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
9087, 88, 893bitr4g 305 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ 𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}))
9115, 16, 17, 90eqrd 3817 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))})
92 eqid 2806 . . . 4 (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
9392rnmpt2 7000 . . 3 ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
94 df-mpt 4924 . . 3 (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
9591, 93, 943eqtr4g 2865 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
967, 14, 953eqtrd 2844 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1100   = wceq 1637  wex 1859  wcel 2156  {cab 2792  wne 2978  wrex 3097  Vcvv 3391  cdif 3766  {csn 4370  cop 4376  {copab 4906  cmpt 4923  ccnv 5310  ran crn 5312  cima 5314  cfv 6101  (class class class)co 6874  cmpt2 6876  0cc0 10221   / cdiv 10969  cn 11305  cz 11643  cq 12007  numercnumer 15658  denomcdenom 15659  Basecbs 16068  0gc0g 16305  1rcur 18703  Unitcui 18841  /rcdvr 18884  DivRingcdr 18951  ℤRHomczrh 20056  chrcchr 20058  ℚHomcqqh 30341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-inf2 8785  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299  ax-addf 10300  ax-mulf 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-tpos 7587  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-map 8094  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-sup 8587  df-inf 8588  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-z 11644  df-dec 11760  df-uz 11905  df-q 12008  df-rp 12047  df-fz 12550  df-fl 12817  df-mod 12893  df-seq 13025  df-exp 13084  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-dvds 15204  df-gcd 15436  df-numer 15660  df-denom 15661  df-gz 15851  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-ress 16076  df-plusg 16166  df-mulr 16167  df-starv 16168  df-tset 16172  df-ple 16173  df-ds 16175  df-unif 16176  df-0g 16307  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-mhm 17540  df-grp 17630  df-minusg 17631  df-sbg 17632  df-mulg 17746  df-subg 17793  df-ghm 17860  df-od 18149  df-cmn 18396  df-mgp 18692  df-ur 18704  df-ring 18751  df-cring 18752  df-oppr 18825  df-dvdsr 18843  df-unit 18844  df-invr 18874  df-dvr 18885  df-rnghom 18919  df-drng 18953  df-subrg 18982  df-cnfld 19955  df-zring 20027  df-zrh 20060  df-chr 20062  df-qqh 30342
This theorem is referenced by:  qqhvval  30352  qqhf  30355
  Copyright terms: Public domain W3C validator