Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2 Structured version   Visualization version   GIF version

Theorem qqhval2 33260
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐡 = (Baseβ€˜π‘…)
qqhval2.1 / = (/rβ€˜π‘…)
qqhval2.2 𝐿 = (β„€RHomβ€˜π‘…)
Assertion
Ref Expression
qqhval2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) = (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))
Distinct variable groups:   / ,π‘ž   𝐡,π‘ž   𝐿,π‘ž   𝑅,π‘ž

Proof of Theorem qqhval2
Dummy variables 𝑒 𝑠 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3491 . . . 4 (𝑅 ∈ DivRing β†’ 𝑅 ∈ V)
21adantr 479 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ 𝑅 ∈ V)
3 qqhval2.1 . . . 4 / = (/rβ€˜π‘…)
4 eqid 2730 . . . 4 (1rβ€˜π‘…) = (1rβ€˜π‘…)
5 qqhval2.2 . . . 4 𝐿 = (β„€RHomβ€˜π‘…)
63, 4, 5qqhval 33252 . . 3 (𝑅 ∈ V β†’ (β„šHomβ€˜π‘…) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
72, 6syl 17 . 2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
8 eqid 2730 . . . 4 β„€ = β„€
9 qqhval2.0 . . . . 5 𝐡 = (Baseβ€˜π‘…)
10 eqid 2730 . . . . 5 (0gβ€˜π‘…) = (0gβ€˜π‘…)
119, 5, 10zrhunitpreima 33256 . . . 4 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (◑𝐿 β€œ (Unitβ€˜π‘…)) = (β„€ βˆ– {0}))
12 mpoeq12 7484 . . . 4 ((β„€ = β„€ ∧ (◑𝐿 β€œ (Unitβ€˜π‘…)) = (β„€ βˆ– {0})) β†’ (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
138, 11, 12sylancr 585 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
1413rneqd 5936 . 2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
15 nfv 1915 . . . 4 Ⅎ𝑒(𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0)
16 nfab1 2903 . . . 4 Ⅎ𝑒{𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩}
17 nfcv 2901 . . . 4 Ⅎ𝑒{βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))}
18 simpr 483 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
19 zssq 12944 . . . . . . . . . . . 12 β„€ βŠ† β„š
20 simplrl 773 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ π‘₯ ∈ β„€)
2119, 20sselid 3979 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ π‘₯ ∈ β„š)
22 simplrr 774 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 ∈ (β„€ βˆ– {0}))
2322eldifad 3959 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 ∈ β„€)
2419, 23sselid 3979 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 ∈ β„š)
2522eldifbd 3960 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ Β¬ 𝑦 ∈ {0})
26 velsn 4643 . . . . . . . . . . . . 13 (𝑦 ∈ {0} ↔ 𝑦 = 0)
2726necon3bbii 2986 . . . . . . . . . . . 12 (Β¬ 𝑦 ∈ {0} ↔ 𝑦 β‰  0)
2825, 27sylib 217 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 β‰  0)
29 qdivcl 12958 . . . . . . . . . . 11 ((π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š ∧ 𝑦 β‰  0) β†’ (π‘₯ / 𝑦) ∈ β„š)
3021, 24, 28, 29syl3anc 1369 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ (π‘₯ / 𝑦) ∈ β„š)
31 simplll 771 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑅 ∈ DivRing)
32 simpllr 772 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ (chrβ€˜π‘…) = 0)
339, 3, 5qqhval2lem 33259 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€ ∧ 𝑦 β‰  0)) β†’ ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))) = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)))
3433eqcomd 2736 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€ ∧ 𝑦 β‰  0)) β†’ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))
3531, 32, 20, 23, 28, 34syl23anc 1375 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))
36 ovex 7444 . . . . . . . . . . 11 (π‘₯ / 𝑦) ∈ V
37 ovex 7444 . . . . . . . . . . 11 ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) ∈ V
38 opeq12 4874 . . . . . . . . . . . . 13 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ βŸ¨π‘ž, π‘ βŸ© = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
3938eqeq2d 2741 . . . . . . . . . . . 12 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ↔ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
40 simpl 481 . . . . . . . . . . . . . 14 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ π‘ž = (π‘₯ / 𝑦))
4140eleq1d 2816 . . . . . . . . . . . . 13 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (π‘ž ∈ β„š ↔ (π‘₯ / 𝑦) ∈ β„š))
42 simpr 483 . . . . . . . . . . . . . 14 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)))
4340fveq2d 6894 . . . . . . . . . . . . . . . 16 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (numerβ€˜π‘ž) = (numerβ€˜(π‘₯ / 𝑦)))
4443fveq2d 6894 . . . . . . . . . . . . . . 15 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (πΏβ€˜(numerβ€˜π‘ž)) = (πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))))
4540fveq2d 6894 . . . . . . . . . . . . . . . 16 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (denomβ€˜π‘ž) = (denomβ€˜(π‘₯ / 𝑦)))
4645fveq2d 6894 . . . . . . . . . . . . . . 15 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (πΏβ€˜(denomβ€˜π‘ž)) = (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦))))
4744, 46oveq12d 7429 . . . . . . . . . . . . . 14 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))
4842, 47eqeq12d 2746 . . . . . . . . . . . . 13 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))) ↔ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦))))))
4941, 48anbi12d 629 . . . . . . . . . . . 12 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ ((π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))) ↔ ((π‘₯ / 𝑦) ∈ β„š ∧ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))))
5039, 49anbi12d 629 . . . . . . . . . . 11 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ ((𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))) ↔ (𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ∧ ((π‘₯ / 𝑦) ∈ β„š ∧ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦))))))))
5136, 37, 50spc2ev 3596 . . . . . . . . . 10 ((𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ∧ ((π‘₯ / 𝑦) ∈ β„š ∧ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))) β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
5218, 30, 35, 51syl12anc 833 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
5352ex 411 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) β†’ (𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
5453rexlimdvva 3209 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
5554imp 405 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
56 19.42vv 1959 . . . . . . 7 (βˆƒπ‘žβˆƒπ‘ ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) ↔ ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
57 simprrl 777 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ π‘ž ∈ β„š)
58 qnumcl 16680 . . . . . . . . . 10 (π‘ž ∈ β„š β†’ (numerβ€˜π‘ž) ∈ β„€)
5957, 58syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (numerβ€˜π‘ž) ∈ β„€)
60 qdencl 16681 . . . . . . . . . . . 12 (π‘ž ∈ β„š β†’ (denomβ€˜π‘ž) ∈ β„•)
6157, 60syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (denomβ€˜π‘ž) ∈ β„•)
6261nnzd 12589 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (denomβ€˜π‘ž) ∈ β„€)
63 nnne0 12250 . . . . . . . . . . 11 ((denomβ€˜π‘ž) ∈ β„• β†’ (denomβ€˜π‘ž) β‰  0)
64 nelsn 4667 . . . . . . . . . . 11 ((denomβ€˜π‘ž) β‰  0 β†’ Β¬ (denomβ€˜π‘ž) ∈ {0})
6561, 63, 643syl 18 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ Β¬ (denomβ€˜π‘ž) ∈ {0})
6662, 65eldifd 3958 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (denomβ€˜π‘ž) ∈ (β„€ βˆ– {0}))
67 simprl 767 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ 𝑒 = βŸ¨π‘ž, π‘ βŸ©)
68 qeqnumdivden 16686 . . . . . . . . . . . 12 (π‘ž ∈ β„š β†’ π‘ž = ((numerβ€˜π‘ž) / (denomβ€˜π‘ž)))
6957, 68syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ π‘ž = ((numerβ€˜π‘ž) / (denomβ€˜π‘ž)))
70 simprrr 778 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))
7169, 70opeq12d 4880 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βŸ¨π‘ž, π‘ βŸ© = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩)
7267, 71eqtrd 2770 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ 𝑒 = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩)
73 oveq1 7418 . . . . . . . . . . . 12 (π‘₯ = (numerβ€˜π‘ž) β†’ (π‘₯ / 𝑦) = ((numerβ€˜π‘ž) / 𝑦))
74 fveq2 6890 . . . . . . . . . . . . 13 (π‘₯ = (numerβ€˜π‘ž) β†’ (πΏβ€˜π‘₯) = (πΏβ€˜(numerβ€˜π‘ž)))
7574oveq1d 7426 . . . . . . . . . . . 12 (π‘₯ = (numerβ€˜π‘ž) β†’ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦)))
7673, 75opeq12d 4880 . . . . . . . . . . 11 (π‘₯ = (numerβ€˜π‘ž) β†’ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ = ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩)
7776eqeq2d 2741 . . . . . . . . . 10 (π‘₯ = (numerβ€˜π‘ž) β†’ (𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ↔ 𝑒 = ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩))
78 oveq2 7419 . . . . . . . . . . . 12 (𝑦 = (denomβ€˜π‘ž) β†’ ((numerβ€˜π‘ž) / 𝑦) = ((numerβ€˜π‘ž) / (denomβ€˜π‘ž)))
79 fveq2 6890 . . . . . . . . . . . . 13 (𝑦 = (denomβ€˜π‘ž) β†’ (πΏβ€˜π‘¦) = (πΏβ€˜(denomβ€˜π‘ž)))
8079oveq2d 7427 . . . . . . . . . . . 12 (𝑦 = (denomβ€˜π‘ž) β†’ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))
8178, 80opeq12d 4880 . . . . . . . . . . 11 (𝑦 = (denomβ€˜π‘ž) β†’ ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩ = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩)
8281eqeq2d 2741 . . . . . . . . . 10 (𝑦 = (denomβ€˜π‘ž) β†’ (𝑒 = ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩ ↔ 𝑒 = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩))
8377, 82rspc2ev 3623 . . . . . . . . 9 (((numerβ€˜π‘ž) ∈ β„€ ∧ (denomβ€˜π‘ž) ∈ (β„€ βˆ– {0}) ∧ 𝑒 = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8459, 66, 72, 83syl3anc 1369 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8584exlimivv 1933 . . . . . . 7 (βˆƒπ‘žβˆƒπ‘ ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8656, 85sylbir 234 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8755, 86impbida 797 . . . . 5 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ↔ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
88 abid 2711 . . . . 5 (𝑒 ∈ {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩} ↔ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
89 elopab 5526 . . . . 5 (𝑒 ∈ {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))} ↔ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
9087, 88, 893bitr4g 313 . . . 4 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (𝑒 ∈ {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩} ↔ 𝑒 ∈ {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))}))
9115, 16, 17, 90eqrd 4000 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩} = {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))})
92 eqid 2730 . . . 4 (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
9392rnmpo 7544 . . 3 ran (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩}
94 df-mpt 5231 . . 3 (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))) = {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))}
9591, 93, 943eqtr4g 2795 . 2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ ran (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))
967, 14, 953eqtrd 2774 1 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) = (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  {cab 2707   β‰  wne 2938  βˆƒwrex 3068  Vcvv 3472   βˆ– cdif 3944  {csn 4627  βŸ¨cop 4633  {copab 5209   ↦ cmpt 5230  β—‘ccnv 5674  ran crn 5676   β€œ cima 5678  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413  0cc0 11112   / cdiv 11875  β„•cn 12216  β„€cz 12562  β„šcq 12936  numercnumer 16673  denomcdenom 16674  Basecbs 17148  0gc0g 17389  1rcur 20075  Unitcui 20246  /rcdvr 20291  DivRingcdr 20500  β„€RHomczrh 21268  chrcchr 21270  β„šHomcqqh 33250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-fz 13489  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-dvds 16202  df-gcd 16440  df-numer 16675  df-denom 16676  df-gz 16867  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18987  df-subg 19039  df-ghm 19128  df-od 19437  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-dvr 20292  df-rhm 20363  df-subrng 20434  df-subrg 20459  df-drng 20502  df-cnfld 21145  df-zring 21218  df-zrh 21272  df-chr 21274  df-qqh 33251
This theorem is referenced by:  qqhvval  33261  qqhf  33264
  Copyright terms: Public domain W3C validator