Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2 Structured version   Visualization version   GIF version

Theorem qqhval2 32950
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐡 = (Baseβ€˜π‘…)
qqhval2.1 / = (/rβ€˜π‘…)
qqhval2.2 𝐿 = (β„€RHomβ€˜π‘…)
Assertion
Ref Expression
qqhval2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) = (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))
Distinct variable groups:   / ,π‘ž   𝐡,π‘ž   𝐿,π‘ž   𝑅,π‘ž

Proof of Theorem qqhval2
Dummy variables 𝑒 𝑠 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . . . 4 (𝑅 ∈ DivRing β†’ 𝑅 ∈ V)
21adantr 481 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ 𝑅 ∈ V)
3 qqhval2.1 . . . 4 / = (/rβ€˜π‘…)
4 eqid 2732 . . . 4 (1rβ€˜π‘…) = (1rβ€˜π‘…)
5 qqhval2.2 . . . 4 𝐿 = (β„€RHomβ€˜π‘…)
63, 4, 5qqhval 32942 . . 3 (𝑅 ∈ V β†’ (β„šHomβ€˜π‘…) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
72, 6syl 17 . 2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
8 eqid 2732 . . . 4 β„€ = β„€
9 qqhval2.0 . . . . 5 𝐡 = (Baseβ€˜π‘…)
10 eqid 2732 . . . . 5 (0gβ€˜π‘…) = (0gβ€˜π‘…)
119, 5, 10zrhunitpreima 32946 . . . 4 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (◑𝐿 β€œ (Unitβ€˜π‘…)) = (β„€ βˆ– {0}))
12 mpoeq12 7478 . . . 4 ((β„€ = β„€ ∧ (◑𝐿 β€œ (Unitβ€˜π‘…)) = (β„€ βˆ– {0})) β†’ (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
138, 11, 12sylancr 587 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
1413rneqd 5935 . 2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
15 nfv 1917 . . . 4 Ⅎ𝑒(𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0)
16 nfab1 2905 . . . 4 Ⅎ𝑒{𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩}
17 nfcv 2903 . . . 4 Ⅎ𝑒{βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))}
18 simpr 485 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
19 zssq 12936 . . . . . . . . . . . 12 β„€ βŠ† β„š
20 simplrl 775 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ π‘₯ ∈ β„€)
2119, 20sselid 3979 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ π‘₯ ∈ β„š)
22 simplrr 776 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 ∈ (β„€ βˆ– {0}))
2322eldifad 3959 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 ∈ β„€)
2419, 23sselid 3979 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 ∈ β„š)
2522eldifbd 3960 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ Β¬ 𝑦 ∈ {0})
26 velsn 4643 . . . . . . . . . . . . 13 (𝑦 ∈ {0} ↔ 𝑦 = 0)
2726necon3bbii 2988 . . . . . . . . . . . 12 (Β¬ 𝑦 ∈ {0} ↔ 𝑦 β‰  0)
2825, 27sylib 217 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑦 β‰  0)
29 qdivcl 12950 . . . . . . . . . . 11 ((π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š ∧ 𝑦 β‰  0) β†’ (π‘₯ / 𝑦) ∈ β„š)
3021, 24, 28, 29syl3anc 1371 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ (π‘₯ / 𝑦) ∈ β„š)
31 simplll 773 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ 𝑅 ∈ DivRing)
32 simpllr 774 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ (chrβ€˜π‘…) = 0)
339, 3, 5qqhval2lem 32949 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€ ∧ 𝑦 β‰  0)) β†’ ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))) = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)))
3433eqcomd 2738 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€ ∧ 𝑦 β‰  0)) β†’ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))
3531, 32, 20, 23, 28, 34syl23anc 1377 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))
36 ovex 7438 . . . . . . . . . . 11 (π‘₯ / 𝑦) ∈ V
37 ovex 7438 . . . . . . . . . . 11 ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) ∈ V
38 opeq12 4874 . . . . . . . . . . . . 13 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ βŸ¨π‘ž, π‘ βŸ© = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
3938eqeq2d 2743 . . . . . . . . . . . 12 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ↔ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
40 simpl 483 . . . . . . . . . . . . . 14 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ π‘ž = (π‘₯ / 𝑦))
4140eleq1d 2818 . . . . . . . . . . . . 13 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (π‘ž ∈ β„š ↔ (π‘₯ / 𝑦) ∈ β„š))
42 simpr 485 . . . . . . . . . . . . . 14 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)))
4340fveq2d 6892 . . . . . . . . . . . . . . . 16 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (numerβ€˜π‘ž) = (numerβ€˜(π‘₯ / 𝑦)))
4443fveq2d 6892 . . . . . . . . . . . . . . 15 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (πΏβ€˜(numerβ€˜π‘ž)) = (πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))))
4540fveq2d 6892 . . . . . . . . . . . . . . . 16 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (denomβ€˜π‘ž) = (denomβ€˜(π‘₯ / 𝑦)))
4645fveq2d 6892 . . . . . . . . . . . . . . 15 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (πΏβ€˜(denomβ€˜π‘ž)) = (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦))))
4744, 46oveq12d 7423 . . . . . . . . . . . . . 14 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))
4842, 47eqeq12d 2748 . . . . . . . . . . . . 13 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ (𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))) ↔ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦))))))
4941, 48anbi12d 631 . . . . . . . . . . . 12 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ ((π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))) ↔ ((π‘₯ / 𝑦) ∈ β„š ∧ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))))
5039, 49anbi12d 631 . . . . . . . . . . 11 ((π‘ž = (π‘₯ / 𝑦) ∧ 𝑠 = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))) β†’ ((𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))) ↔ (𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ∧ ((π‘₯ / 𝑦) ∈ β„š ∧ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦))))))))
5136, 37, 50spc2ev 3597 . . . . . . . . . 10 ((𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ∧ ((π‘₯ / 𝑦) ∈ β„š ∧ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜(π‘₯ / 𝑦))) / (πΏβ€˜(denomβ€˜(π‘₯ / 𝑦)))))) β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
5218, 30, 35, 51syl12anc 835 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) ∧ 𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
5352ex 413 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ (β„€ βˆ– {0}))) β†’ (𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
5453rexlimdvva 3211 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
5554imp 407 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) β†’ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
56 19.42vv 1961 . . . . . . 7 (βˆƒπ‘žβˆƒπ‘ ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) ↔ ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
57 simprrl 779 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ π‘ž ∈ β„š)
58 qnumcl 16672 . . . . . . . . . 10 (π‘ž ∈ β„š β†’ (numerβ€˜π‘ž) ∈ β„€)
5957, 58syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (numerβ€˜π‘ž) ∈ β„€)
60 qdencl 16673 . . . . . . . . . . . 12 (π‘ž ∈ β„š β†’ (denomβ€˜π‘ž) ∈ β„•)
6157, 60syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (denomβ€˜π‘ž) ∈ β„•)
6261nnzd 12581 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (denomβ€˜π‘ž) ∈ β„€)
63 nnne0 12242 . . . . . . . . . . 11 ((denomβ€˜π‘ž) ∈ β„• β†’ (denomβ€˜π‘ž) β‰  0)
64 nelsn 4667 . . . . . . . . . . 11 ((denomβ€˜π‘ž) β‰  0 β†’ Β¬ (denomβ€˜π‘ž) ∈ {0})
6561, 63, 643syl 18 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ Β¬ (denomβ€˜π‘ž) ∈ {0})
6662, 65eldifd 3958 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ (denomβ€˜π‘ž) ∈ (β„€ βˆ– {0}))
67 simprl 769 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ 𝑒 = βŸ¨π‘ž, π‘ βŸ©)
68 qeqnumdivden 16678 . . . . . . . . . . . 12 (π‘ž ∈ β„š β†’ π‘ž = ((numerβ€˜π‘ž) / (denomβ€˜π‘ž)))
6957, 68syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ π‘ž = ((numerβ€˜π‘ž) / (denomβ€˜π‘ž)))
70 simprrr 780 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))
7169, 70opeq12d 4880 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βŸ¨π‘ž, π‘ βŸ© = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩)
7267, 71eqtrd 2772 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ 𝑒 = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩)
73 oveq1 7412 . . . . . . . . . . . 12 (π‘₯ = (numerβ€˜π‘ž) β†’ (π‘₯ / 𝑦) = ((numerβ€˜π‘ž) / 𝑦))
74 fveq2 6888 . . . . . . . . . . . . 13 (π‘₯ = (numerβ€˜π‘ž) β†’ (πΏβ€˜π‘₯) = (πΏβ€˜(numerβ€˜π‘ž)))
7574oveq1d 7420 . . . . . . . . . . . 12 (π‘₯ = (numerβ€˜π‘ž) β†’ ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦)))
7673, 75opeq12d 4880 . . . . . . . . . . 11 (π‘₯ = (numerβ€˜π‘ž) β†’ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ = ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩)
7776eqeq2d 2743 . . . . . . . . . 10 (π‘₯ = (numerβ€˜π‘ž) β†’ (𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ↔ 𝑒 = ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩))
78 oveq2 7413 . . . . . . . . . . . 12 (𝑦 = (denomβ€˜π‘ž) β†’ ((numerβ€˜π‘ž) / 𝑦) = ((numerβ€˜π‘ž) / (denomβ€˜π‘ž)))
79 fveq2 6888 . . . . . . . . . . . . 13 (𝑦 = (denomβ€˜π‘ž) β†’ (πΏβ€˜π‘¦) = (πΏβ€˜(denomβ€˜π‘ž)))
8079oveq2d 7421 . . . . . . . . . . . 12 (𝑦 = (denomβ€˜π‘ž) β†’ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦)) = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))
8178, 80opeq12d 4880 . . . . . . . . . . 11 (𝑦 = (denomβ€˜π‘ž) β†’ ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩ = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩)
8281eqeq2d 2743 . . . . . . . . . 10 (𝑦 = (denomβ€˜π‘ž) β†’ (𝑒 = ⟨((numerβ€˜π‘ž) / 𝑦), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜π‘¦))⟩ ↔ 𝑒 = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩))
8377, 82rspc2ev 3623 . . . . . . . . 9 (((numerβ€˜π‘ž) ∈ β„€ ∧ (denomβ€˜π‘ž) ∈ (β„€ βˆ– {0}) ∧ 𝑒 = ⟨((numerβ€˜π‘ž) / (denomβ€˜π‘ž)), ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))⟩) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8459, 66, 72, 83syl3anc 1371 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8584exlimivv 1935 . . . . . . 7 (βˆƒπ‘žβˆƒπ‘ ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8656, 85sylbir 234 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))) β†’ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
8755, 86impbida 799 . . . . 5 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩ ↔ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))))
88 abid 2713 . . . . 5 (𝑒 ∈ {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩} ↔ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
89 elopab 5526 . . . . 5 (𝑒 ∈ {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))} ↔ βˆƒπ‘žβˆƒπ‘ (𝑒 = βŸ¨π‘ž, π‘ βŸ© ∧ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))))
9087, 88, 893bitr4g 313 . . . 4 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (𝑒 ∈ {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩} ↔ 𝑒 ∈ {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))}))
9115, 16, 17, 90eqrd 4000 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩} = {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))})
92 eqid 2732 . . . 4 (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
9392rnmpo 7538 . . 3 ran (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = {𝑒 ∣ βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ (β„€ βˆ– {0})𝑒 = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩}
94 df-mpt 5231 . . 3 (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))) = {βŸ¨π‘ž, π‘ βŸ© ∣ (π‘ž ∈ β„š ∧ 𝑠 = ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž))))}
9591, 93, 943eqtr4g 2797 . 2 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ ran (π‘₯ ∈ β„€, 𝑦 ∈ (β„€ βˆ– {0}) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) = (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))
967, 14, 953eqtrd 2776 1 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) = (π‘ž ∈ β„š ↦ ((πΏβ€˜(numerβ€˜π‘ž)) / (πΏβ€˜(denomβ€˜π‘ž)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3944  {csn 4627  βŸ¨cop 4633  {copab 5209   ↦ cmpt 5230  β—‘ccnv 5674  ran crn 5676   β€œ cima 5678  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106   / cdiv 11867  β„•cn 12208  β„€cz 12554  β„šcq 12928  numercnumer 16665  denomcdenom 16666  Basecbs 17140  0gc0g 17381  1rcur 19998  Unitcui 20161  /rcdvr 20206  DivRingcdr 20307  β„€RHomczrh 21040  chrcchr 21042  β„šHomcqqh 32940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-numer 16667  df-denom 16668  df-gz 16859  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-od 19390  df-cmn 19644  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-drng 20309  df-subrg 20353  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-chr 21046  df-qqh 32941
This theorem is referenced by:  qqhvval  32951  qqhf  32954
  Copyright terms: Public domain W3C validator