Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2 Structured version   Visualization version   GIF version

Theorem qqhval2 33949
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Distinct variable groups:   / ,𝑞   𝐵,𝑞   𝐿,𝑞   𝑅,𝑞

Proof of Theorem qqhval2
Dummy variables 𝑒 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3457 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ V)
21adantr 480 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ V)
3 qqhval2.1 . . . 4 / = (/r𝑅)
4 eqid 2729 . . . 4 (1r𝑅) = (1r𝑅)
5 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
63, 4, 5qqhval 33939 . . 3 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
72, 6syl 17 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
8 eqid 2729 . . . 4 ℤ = ℤ
9 qqhval2.0 . . . . 5 𝐵 = (Base‘𝑅)
10 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
119, 5, 10zrhunitpreima 33943 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0}))
12 mpoeq12 7422 . . . 4 ((ℤ = ℤ ∧ (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
138, 11, 12sylancr 587 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1413rneqd 5880 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
15 nfv 1914 . . . 4 𝑒(𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0)
16 nfab1 2893 . . . 4 𝑒{𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
17 nfcv 2891 . . . 4 𝑒{⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
18 simpr 484 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
19 zssq 12857 . . . . . . . . . . . 12 ℤ ⊆ ℚ
20 simplrl 776 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℤ)
2119, 20sselid 3933 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℚ)
22 simplrr 777 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ (ℤ ∖ {0}))
2322eldifad 3915 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℤ)
2419, 23sselid 3933 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℚ)
2522eldifbd 3916 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ¬ 𝑦 ∈ {0})
26 velsn 4593 . . . . . . . . . . . . 13 (𝑦 ∈ {0} ↔ 𝑦 = 0)
2726necon3bbii 2972 . . . . . . . . . . . 12 𝑦 ∈ {0} ↔ 𝑦 ≠ 0)
2825, 27sylib 218 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ≠ 0)
29 qdivcl 12871 . . . . . . . . . . 11 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) ∈ ℚ)
3021, 24, 28, 29syl3anc 1373 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (𝑥 / 𝑦) ∈ ℚ)
31 simplll 774 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑅 ∈ DivRing)
32 simpllr 775 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (chr‘𝑅) = 0)
339, 3, 5qqhval2lem 33948 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))) = ((𝐿𝑥) / (𝐿𝑦)))
3433eqcomd 2735 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
3531, 32, 20, 23, 28, 34syl23anc 1379 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
36 ovex 7382 . . . . . . . . . . 11 (𝑥 / 𝑦) ∈ V
37 ovex 7382 . . . . . . . . . . 11 ((𝐿𝑥) / (𝐿𝑦)) ∈ V
38 opeq12 4826 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ⟨𝑞, 𝑠⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
3938eqeq2d 2740 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑒 = ⟨𝑞, 𝑠⟩ ↔ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
40 simpl 482 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑞 = (𝑥 / 𝑦))
4140eleq1d 2813 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑞 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
42 simpr 484 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑠 = ((𝐿𝑥) / (𝐿𝑦)))
4340fveq2d 6826 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (numer‘𝑞) = (numer‘(𝑥 / 𝑦)))
4443fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(numer‘𝑞)) = (𝐿‘(numer‘(𝑥 / 𝑦))))
4540fveq2d 6826 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (denom‘𝑞) = (denom‘(𝑥 / 𝑦)))
4645fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(denom‘𝑞)) = (𝐿‘(denom‘(𝑥 / 𝑦))))
4744, 46oveq12d 7367 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
4842, 47eqeq12d 2745 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ↔ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))
4941, 48anbi12d 632 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))))
5039, 49anbi12d 632 . . . . . . . . . . 11 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) ↔ (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))))
5136, 37, 50spc2ev 3562 . . . . . . . . . 10 ((𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5218, 30, 35, 51syl12anc 836 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5352ex 412 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5453rexlimdvva 3186 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5554imp 406 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
56 19.42vv 1957 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) ↔ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
57 simprrl 780 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 ∈ ℚ)
58 qnumcl 16651 . . . . . . . . . 10 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
5957, 58syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (numer‘𝑞) ∈ ℤ)
60 qdencl 16652 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
6157, 60syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℕ)
6261nnzd 12498 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℤ)
63 nnne0 12162 . . . . . . . . . . 11 ((denom‘𝑞) ∈ ℕ → (denom‘𝑞) ≠ 0)
64 nelsn 4618 . . . . . . . . . . 11 ((denom‘𝑞) ≠ 0 → ¬ (denom‘𝑞) ∈ {0})
6561, 63, 643syl 18 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ¬ (denom‘𝑞) ∈ {0})
6662, 65eldifd 3914 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
67 simprl 770 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨𝑞, 𝑠⟩)
68 qeqnumdivden 16657 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6957, 68syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
70 simprrr 781 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
7169, 70opeq12d 4832 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ⟨𝑞, 𝑠⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
7267, 71eqtrd 2764 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
73 oveq1 7356 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → (𝑥 / 𝑦) = ((numer‘𝑞) / 𝑦))
74 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = (numer‘𝑞) → (𝐿𝑥) = (𝐿‘(numer‘𝑞)))
7574oveq1d 7364 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)))
7673, 75opeq12d 4832 . . . . . . . . . . 11 (𝑥 = (numer‘𝑞) → ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩)
7776eqeq2d 2740 . . . . . . . . . 10 (𝑥 = (numer‘𝑞) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩))
78 oveq2 7357 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((numer‘𝑞) / 𝑦) = ((numer‘𝑞) / (denom‘𝑞)))
79 fveq2 6822 . . . . . . . . . . . . 13 (𝑦 = (denom‘𝑞) → (𝐿𝑦) = (𝐿‘(denom‘𝑞)))
8079oveq2d 7365 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
8178, 80opeq12d 4832 . . . . . . . . . . 11 (𝑦 = (denom‘𝑞) → ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
8281eqeq2d 2740 . . . . . . . . . 10 (𝑦 = (denom‘𝑞) → (𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩))
8377, 82rspc2ev 3590 . . . . . . . . 9 (((numer‘𝑞) ∈ ℤ ∧ (denom‘𝑞) ∈ (ℤ ∖ {0}) ∧ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8459, 66, 72, 83syl3anc 1373 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8584exlimivv 1932 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8656, 85sylbir 235 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8755, 86impbida 800 . . . . 5 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
88 abid 2711 . . . . 5 (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
89 elopab 5470 . . . . 5 (𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))} ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
9087, 88, 893bitr4g 314 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ 𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}))
9115, 16, 17, 90eqrd 3955 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))})
92 eqid 2729 . . . 4 (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
9392rnmpo 7482 . . 3 ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
94 df-mpt 5174 . . 3 (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
9591, 93, 943eqtr4g 2789 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
967, 14, 953eqtrd 2768 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wrex 3053  Vcvv 3436  cdif 3900  {csn 4577  cop 4583  {copab 5154  cmpt 5173  ccnv 5618  ran crn 5620  cima 5622  cfv 6482  (class class class)co 7349  cmpo 7351  0cc0 11009   / cdiv 11777  cn 12128  cz 12471  cq 12849  numercnumer 16644  denomcdenom 16645  Basecbs 17120  0gc0g 17343  1rcur 20066  Unitcui 20240  /rcdvr 20285  DivRingcdr 20614  ℤRHomczrh 21406  chrcchr 21408  ℚHomcqqh 33937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-fz 13411  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-chr 21412  df-qqh 33938
This theorem is referenced by:  qqhvval  33950  qqhf  33953
  Copyright terms: Public domain W3C validator