Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. . . 4
β’ (π
β DivRing β π
β V) |
2 | 1 | adantr 481 |
. . 3
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
π
β
V) |
3 | | qqhval2.1 |
. . . 4
β’ / =
(/rβπ
) |
4 | | eqid 2732 |
. . . 4
β’
(1rβπ
) = (1rβπ
) |
5 | | qqhval2.2 |
. . . 4
β’ πΏ = (β€RHomβπ
) |
6 | 3, 4, 5 | qqhval 32942 |
. . 3
β’ (π
β V β
(βHomβπ
) = ran
(π₯ β β€, π¦ β (β‘πΏ β (Unitβπ
)) β¦ β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©)) |
7 | 2, 6 | syl 17 |
. 2
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(βHomβπ
) = ran
(π₯ β β€, π¦ β (β‘πΏ β (Unitβπ
)) β¦ β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©)) |
8 | | eqid 2732 |
. . . 4
β’ β€ =
β€ |
9 | | qqhval2.0 |
. . . . 5
β’ π΅ = (Baseβπ
) |
10 | | eqid 2732 |
. . . . 5
β’
(0gβπ
) = (0gβπ
) |
11 | 9, 5, 10 | zrhunitpreima 32946 |
. . . 4
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(β‘πΏ β (Unitβπ
)) = (β€ β {0})) |
12 | | mpoeq12 7478 |
. . . 4
β’ ((β€
= β€ β§ (β‘πΏ β (Unitβπ
)) = (β€ β {0})) β (π₯ β β€, π¦ β (β‘πΏ β (Unitβπ
)) β¦ β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) = (π₯ β β€, π¦ β (β€ β {0}) β¦
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©)) |
13 | 8, 11, 12 | sylancr 587 |
. . 3
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(π₯ β β€, π¦ β (β‘πΏ β (Unitβπ
)) β¦ β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) = (π₯ β β€, π¦ β (β€ β {0}) β¦
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©)) |
14 | 13 | rneqd 5935 |
. 2
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
ran (π₯ β β€,
π¦ β (β‘πΏ β (Unitβπ
)) β¦ β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) = ran (π₯ β β€, π¦ β (β€ β {0}) β¦
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©)) |
15 | | nfv 1917 |
. . . 4
β’
β²π(π
β DivRing β§
(chrβπ
) =
0) |
16 | | nfab1 2905 |
. . . 4
β’
β²π{π β£ βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©} |
17 | | nfcv 2903 |
. . . 4
β’
β²π{β¨π, π β© β£ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))} |
18 | | simpr 485 |
. . . . . . . . . 10
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
19 | | zssq 12936 |
. . . . . . . . . . . 12
β’ β€
β β |
20 | | simplrl 775 |
. . . . . . . . . . . 12
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π₯ β β€) |
21 | 19, 20 | sselid 3979 |
. . . . . . . . . . 11
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π₯ β β) |
22 | | simplrr 776 |
. . . . . . . . . . . . 13
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π¦ β (β€ β
{0})) |
23 | 22 | eldifad 3959 |
. . . . . . . . . . . 12
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π¦ β β€) |
24 | 19, 23 | sselid 3979 |
. . . . . . . . . . 11
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π¦ β β) |
25 | 22 | eldifbd 3960 |
. . . . . . . . . . . 12
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β Β¬ π¦ β {0}) |
26 | | velsn 4643 |
. . . . . . . . . . . . 13
β’ (π¦ β {0} β π¦ = 0) |
27 | 26 | necon3bbii 2988 |
. . . . . . . . . . . 12
β’ (Β¬
π¦ β {0} β π¦ β 0) |
28 | 25, 27 | sylib 217 |
. . . . . . . . . . 11
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π¦ β 0) |
29 | | qdivcl 12950 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ π¦ β β β§ π¦ β 0) β (π₯ / π¦) β β) |
30 | 21, 24, 28, 29 | syl3anc 1371 |
. . . . . . . . . 10
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β (π₯ / π¦) β β) |
31 | | simplll 773 |
. . . . . . . . . . 11
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β π
β DivRing) |
32 | | simpllr 774 |
. . . . . . . . . . 11
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β (chrβπ
) = 0) |
33 | 9, 3, 5 | qqhval2lem 32949 |
. . . . . . . . . . . 12
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β β€ β§
π¦ β 0)) β ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦)))) = ((πΏβπ₯) / (πΏβπ¦))) |
34 | 33 | eqcomd 2738 |
. . . . . . . . . . 11
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β β€ β§
π¦ β 0)) β ((πΏβπ₯) / (πΏβπ¦)) = ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦))))) |
35 | 31, 32, 20, 23, 28, 34 | syl23anc 1377 |
. . . . . . . . . 10
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β ((πΏβπ₯) / (πΏβπ¦)) = ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦))))) |
36 | | ovex 7438 |
. . . . . . . . . . 11
β’ (π₯ / π¦) β V |
37 | | ovex 7438 |
. . . . . . . . . . 11
β’ ((πΏβπ₯) / (πΏβπ¦)) β V |
38 | | opeq12 4874 |
. . . . . . . . . . . . 13
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β β¨π, π β© = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
39 | 38 | eqeq2d 2743 |
. . . . . . . . . . . 12
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β (π = β¨π, π β© β π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©)) |
40 | | simpl 483 |
. . . . . . . . . . . . . 14
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β π = (π₯ / π¦)) |
41 | 40 | eleq1d 2818 |
. . . . . . . . . . . . 13
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β (π β β β (π₯ / π¦) β β)) |
42 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β π = ((πΏβπ₯) / (πΏβπ¦))) |
43 | 40 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β (numerβπ) = (numerβ(π₯ / π¦))) |
44 | 43 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β (πΏβ(numerβπ)) = (πΏβ(numerβ(π₯ / π¦)))) |
45 | 40 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β (denomβπ) = (denomβ(π₯ / π¦))) |
46 | 45 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β (πΏβ(denomβπ)) = (πΏβ(denomβ(π₯ / π¦)))) |
47 | 44, 46 | oveq12d 7423 |
. . . . . . . . . . . . . 14
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β ((πΏβ(numerβπ)) / (πΏβ(denomβπ))) = ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦))))) |
48 | 42, 47 | eqeq12d 2748 |
. . . . . . . . . . . . 13
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β (π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))) β ((πΏβπ₯) / (πΏβπ¦)) = ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦)))))) |
49 | 41, 48 | anbi12d 631 |
. . . . . . . . . . . 12
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β ((π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))) β ((π₯ / π¦) β β β§ ((πΏβπ₯) / (πΏβπ¦)) = ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦))))))) |
50 | 39, 49 | anbi12d 631 |
. . . . . . . . . . 11
β’ ((π = (π₯ / π¦) β§ π = ((πΏβπ₯) / (πΏβπ¦))) β ((π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))) β (π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β© β§ ((π₯ / π¦) β β β§ ((πΏβπ₯) / (πΏβπ¦)) = ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦)))))))) |
51 | 36, 37, 50 | spc2ev 3597 |
. . . . . . . . . 10
β’ ((π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β© β§ ((π₯ / π¦) β β β§ ((πΏβπ₯) / (πΏβπ¦)) = ((πΏβ(numerβ(π₯ / π¦))) / (πΏβ(denomβ(π₯ / π¦)))))) β βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) |
52 | 18, 30, 35, 51 | syl12anc 835 |
. . . . . . . . 9
β’ ((((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β§ π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) |
53 | 52 | ex 413 |
. . . . . . . 8
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π₯ β β€ β§
π¦ β (β€ β
{0}))) β (π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β© β βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))))) |
54 | 53 | rexlimdvva 3211 |
. . . . . . 7
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(βπ₯ β β€
βπ¦ β (β€
β {0})π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β© β βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))))) |
55 | 54 | imp 407 |
. . . . . 6
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
βπ₯ β β€
βπ¦ β (β€
β {0})π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) β βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) |
56 | | 19.42vv 1961 |
. . . . . . 7
β’
(βπβπ ((π
β DivRing β§ (chrβπ
) = 0) β§ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β ((π
β DivRing β§ (chrβπ
) = 0) β§ βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))))) |
57 | | simprrl 779 |
. . . . . . . . . 10
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β π β β) |
58 | | qnumcl 16672 |
. . . . . . . . . 10
β’ (π β β β
(numerβπ) β
β€) |
59 | 57, 58 | syl 17 |
. . . . . . . . 9
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β (numerβπ) β β€) |
60 | | qdencl 16673 |
. . . . . . . . . . . 12
β’ (π β β β
(denomβπ) β
β) |
61 | 57, 60 | syl 17 |
. . . . . . . . . . 11
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β (denomβπ) β β) |
62 | 61 | nnzd 12581 |
. . . . . . . . . 10
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β (denomβπ) β β€) |
63 | | nnne0 12242 |
. . . . . . . . . . 11
β’
((denomβπ)
β β β (denomβπ) β 0) |
64 | | nelsn 4667 |
. . . . . . . . . . 11
β’
((denomβπ)
β 0 β Β¬ (denomβπ) β {0}) |
65 | 61, 63, 64 | 3syl 18 |
. . . . . . . . . 10
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β Β¬ (denomβπ) β {0}) |
66 | 62, 65 | eldifd 3958 |
. . . . . . . . 9
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β (denomβπ) β (β€ β
{0})) |
67 | | simprl 769 |
. . . . . . . . . 10
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β π = β¨π, π β©) |
68 | | qeqnumdivden 16678 |
. . . . . . . . . . . 12
β’ (π β β β π = ((numerβπ) / (denomβπ))) |
69 | 57, 68 | syl 17 |
. . . . . . . . . . 11
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β π = ((numerβπ) / (denomβπ))) |
70 | | simprrr 780 |
. . . . . . . . . . 11
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))) |
71 | 69, 70 | opeq12d 4880 |
. . . . . . . . . 10
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β β¨π, π β© = β¨((numerβπ) / (denomβπ)), ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))β©) |
72 | 67, 71 | eqtrd 2772 |
. . . . . . . . 9
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β π = β¨((numerβπ) / (denomβπ)), ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))β©) |
73 | | oveq1 7412 |
. . . . . . . . . . . 12
β’ (π₯ = (numerβπ) β (π₯ / π¦) = ((numerβπ) / π¦)) |
74 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π₯ = (numerβπ) β (πΏβπ₯) = (πΏβ(numerβπ))) |
75 | 74 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ (π₯ = (numerβπ) β ((πΏβπ₯) / (πΏβπ¦)) = ((πΏβ(numerβπ)) / (πΏβπ¦))) |
76 | 73, 75 | opeq12d 4880 |
. . . . . . . . . . 11
β’ (π₯ = (numerβπ) β β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β© = β¨((numerβπ) / π¦), ((πΏβ(numerβπ)) / (πΏβπ¦))β©) |
77 | 76 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π₯ = (numerβπ) β (π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β© β π = β¨((numerβπ) / π¦), ((πΏβ(numerβπ)) / (πΏβπ¦))β©)) |
78 | | oveq2 7413 |
. . . . . . . . . . . 12
β’ (π¦ = (denomβπ) β ((numerβπ) / π¦) = ((numerβπ) / (denomβπ))) |
79 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π¦ = (denomβπ) β (πΏβπ¦) = (πΏβ(denomβπ))) |
80 | 79 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ (π¦ = (denomβπ) β ((πΏβ(numerβπ)) / (πΏβπ¦)) = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))) |
81 | 78, 80 | opeq12d 4880 |
. . . . . . . . . . 11
β’ (π¦ = (denomβπ) β
β¨((numerβπ) /
π¦), ((πΏβ(numerβπ)) / (πΏβπ¦))β© = β¨((numerβπ) / (denomβπ)), ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))β©) |
82 | 81 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π¦ = (denomβπ) β (π = β¨((numerβπ) / π¦), ((πΏβ(numerβπ)) / (πΏβπ¦))β© β π = β¨((numerβπ) / (denomβπ)), ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))β©)) |
83 | 77, 82 | rspc2ev 3623 |
. . . . . . . . 9
β’
(((numerβπ)
β β€ β§ (denomβπ) β (β€ β {0}) β§ π = β¨((numerβπ) / (denomβπ)), ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))β©) β βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
84 | 59, 66, 72, 83 | syl3anc 1371 |
. . . . . . . 8
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
(π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
85 | 84 | exlimivv 1935 |
. . . . . . 7
β’
(βπβπ ((π
β DivRing β§ (chrβπ
) = 0) β§ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
86 | 56, 85 | sylbir 234 |
. . . . . 6
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) β βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
87 | 55, 86 | impbida 799 |
. . . . 5
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(βπ₯ β β€
βπ¦ β (β€
β {0})π =
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β© β βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))))) |
88 | | abid 2713 |
. . . . 5
β’ (π β {π β£ βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©} β βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
89 | | elopab 5526 |
. . . . 5
β’ (π β {β¨π, π β© β£ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))} β βπβπ (π = β¨π, π β© β§ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))))) |
90 | 87, 88, 89 | 3bitr4g 313 |
. . . 4
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(π β {π β£ βπ₯ β β€ βπ¦ β (β€ β
{0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©} β π β {β¨π, π β© β£ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))})) |
91 | 15, 16, 17, 90 | eqrd 4000 |
. . 3
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
{π β£ βπ₯ β β€ βπ¦ β (β€ β
{0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©} = {β¨π, π β© β£ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))}) |
92 | | eqid 2732 |
. . . 4
β’ (π₯ β β€, π¦ β (β€ β {0})
β¦ β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) = (π₯ β β€, π¦ β (β€ β {0}) β¦
β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) |
93 | 92 | rnmpo 7538 |
. . 3
β’ ran
(π₯ β β€, π¦ β (β€ β {0})
β¦ β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©) = {π β£ βπ₯ β β€ βπ¦ β (β€ β {0})π = β¨(π₯ / π¦), ((πΏβπ₯) / (πΏβπ¦))β©} |
94 | | df-mpt 5231 |
. . 3
β’ (π β β β¦ ((πΏβ(numerβπ)) / (πΏβ(denomβπ)))) = {β¨π, π β© β£ (π β β β§ π = ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))} |
95 | 91, 93, 94 | 3eqtr4g 2797 |
. 2
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
ran (π₯ β β€,
π¦ β (β€ β
{0}) β¦ β¨(π₯ /
π¦), ((πΏβπ₯) / (πΏβπ¦))β©) = (π β β β¦ ((πΏβ(numerβπ)) / (πΏβ(denomβπ))))) |
96 | 7, 14, 95 | 3eqtrd 2776 |
1
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(βHomβπ
) =
(π β β β¦
((πΏβ(numerβπ)) / (πΏβ(denomβπ))))) |