MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz1isolem Structured version   Visualization version   GIF version

Theorem fz1isolem 14458
Description: Lemma for fz1iso 14459. (Contributed by Mario Carneiro, 2-Apr-2014.)
Hypotheses
Ref Expression
fz1iso.1 𝐺 = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
fz1iso.2 𝐵 = (ℕ ∩ ( < “ {((♯‘𝐴) + 1)}))
fz1iso.3 𝐶 = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
fz1iso.4 𝑂 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
fz1isolem ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
Distinct variable groups:   𝑓,𝑛,𝐴   𝐵,𝑓   𝑓,𝐺   𝑓,𝑂   𝑅,𝑓
Allowed substitution hints:   𝐵(𝑛)   𝐶(𝑓,𝑛)   𝑅(𝑛)   𝐺(𝑛)   𝑂(𝑛)

Proof of Theorem fz1isolem
StepHypRef Expression
1 hashcl 14351 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
21adantl 480 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3 nnuz 12898 . . . . . . . . . . 11 ℕ = (ℤ‘1)
4 1z 12625 . . . . . . . . . . . . 13 1 ∈ ℤ
5 fz1iso.1 . . . . . . . . . . . . 13 𝐺 = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
64, 5om2uzisoi 13955 . . . . . . . . . . . 12 𝐺 Isom E , < (ω, (ℤ‘1))
7 isoeq5 7328 . . . . . . . . . . . 12 (ℕ = (ℤ‘1) → (𝐺 Isom E , < (ω, ℕ) ↔ 𝐺 Isom E , < (ω, (ℤ‘1))))
86, 7mpbiri 257 . . . . . . . . . . 11 (ℕ = (ℤ‘1) → 𝐺 Isom E , < (ω, ℕ))
93, 8ax-mp 5 . . . . . . . . . 10 𝐺 Isom E , < (ω, ℕ)
10 isocnv 7337 . . . . . . . . . 10 (𝐺 Isom E , < (ω, ℕ) → 𝐺 Isom < , E (ℕ, ω))
119, 10ax-mp 5 . . . . . . . . 9 𝐺 Isom < , E (ℕ, ω)
12 nn0p1nn 12544 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) + 1) ∈ ℕ)
13 fz1iso.2 . . . . . . . . . 10 𝐵 = (ℕ ∩ ( < “ {((♯‘𝐴) + 1)}))
14 fz1iso.3 . . . . . . . . . . 11 𝐶 = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
15 fvex 6909 . . . . . . . . . . . . 13 (𝐺‘((♯‘𝐴) + 1)) ∈ V
1615epini 6101 . . . . . . . . . . . 12 ( E “ {(𝐺‘((♯‘𝐴) + 1))}) = (𝐺‘((♯‘𝐴) + 1))
1716ineq2i 4207 . . . . . . . . . . 11 (ω ∩ ( E “ {(𝐺‘((♯‘𝐴) + 1))})) = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
1814, 17eqtr4i 2756 . . . . . . . . . 10 𝐶 = (ω ∩ ( E “ {(𝐺‘((♯‘𝐴) + 1))}))
1913, 18isoini2 7346 . . . . . . . . 9 ((𝐺 Isom < , E (ℕ, ω) ∧ ((♯‘𝐴) + 1) ∈ ℕ) → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
2011, 12, 19sylancr 585 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ0 → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
212, 20syl 17 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
22 nnz 12612 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ → 𝑓 ∈ ℤ)
232nn0zd 12617 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (♯‘𝐴) ∈ ℤ)
24 eluz 12869 . . . . . . . . . . . . 13 ((𝑓 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → ((♯‘𝐴) ∈ (ℤ𝑓) ↔ 𝑓 ≤ (♯‘𝐴)))
2522, 23, 24syl2anr 595 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → ((♯‘𝐴) ∈ (ℤ𝑓) ↔ 𝑓 ≤ (♯‘𝐴)))
26 zleltp1 12646 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 < ((♯‘𝐴) + 1)))
2722, 23, 26syl2anr 595 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 < ((♯‘𝐴) + 1)))
28 ovex 7452 . . . . . . . . . . . . . 14 ((♯‘𝐴) + 1) ∈ V
29 vex 3465 . . . . . . . . . . . . . . 15 𝑓 ∈ V
3029eliniseg 6099 . . . . . . . . . . . . . 14 (((♯‘𝐴) + 1) ∈ V → (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ 𝑓 < ((♯‘𝐴) + 1)))
3128, 30ax-mp 5 . . . . . . . . . . . . 13 (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ 𝑓 < ((♯‘𝐴) + 1))
3227, 31bitr4di 288 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})))
3325, 32bitr2d 279 . . . . . . . . . . 11 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ (♯‘𝐴) ∈ (ℤ𝑓)))
3433pm5.32da 577 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝑓 ∈ ℕ ∧ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})) ↔ (𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓))))
3513elin2 4195 . . . . . . . . . 10 (𝑓𝐵 ↔ (𝑓 ∈ ℕ ∧ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})))
36 elfzuzb 13530 . . . . . . . . . . 11 (𝑓 ∈ (1...(♯‘𝐴)) ↔ (𝑓 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
37 elnnuz 12899 . . . . . . . . . . . 12 (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ‘1))
3837anbi1i 622 . . . . . . . . . . 11 ((𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓)) ↔ (𝑓 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
3936, 38bitr4i 277 . . . . . . . . . 10 (𝑓 ∈ (1...(♯‘𝐴)) ↔ (𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
4034, 35, 393bitr4g 313 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑓𝐵𝑓 ∈ (1...(♯‘𝐴))))
4140eqrdv 2723 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐵 = (1...(♯‘𝐴)))
42 isoeq4 7327 . . . . . . . 8 (𝐵 = (1...(♯‘𝐴)) → ((𝐺𝐵) Isom < , E (𝐵, 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶)))
4341, 42syl 17 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝐺𝐵) Isom < , E (𝐵, 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶)))
4421, 43mpbid 231 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶))
45 fz1iso.4 . . . . . . . . . . . . . . . . . 18 𝑂 = OrdIso(𝑅, 𝐴)
4645oion 9561 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Fin → dom 𝑂 ∈ On)
4746adantl 480 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ On)
48 simpr 483 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
49 wofi 9317 . . . . . . . . . . . . . . . . . 18 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
5045oien 9563 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → dom 𝑂𝐴)
5148, 49, 50syl2anc 582 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂𝐴)
52 enfii 9214 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Fin ∧ dom 𝑂𝐴) → dom 𝑂 ∈ Fin)
5348, 51, 52syl2anc 582 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ Fin)
5447, 53elind 4192 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ (On ∩ Fin))
55 onfin2 9256 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
5654, 55eleqtrrdi 2836 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ ω)
57 eqid 2725 . . . . . . . . . . . . . . . 16 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)
58 0z 12602 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
595, 57, 4, 58uzrdgxfr 13968 . . . . . . . . . . . . . . 15 (dom 𝑂 ∈ ω → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + (1 − 0)))
60 1m0e1 12366 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
6160oveq2i 7430 . . . . . . . . . . . . . . 15 (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + (1 − 0)) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1)
6259, 61eqtrdi 2781 . . . . . . . . . . . . . 14 (dom 𝑂 ∈ ω → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1))
6356, 62syl 17 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1))
6451ensymd 9026 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ≈ dom 𝑂)
65 cardennn 10008 . . . . . . . . . . . . . . . . 17 ((𝐴 ≈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → (card‘𝐴) = dom 𝑂)
6664, 56, 65syl2anc 582 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (card‘𝐴) = dom 𝑂)
6766fveq2d 6900 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂))
6857hashgval 14328 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
6968adantl 480 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
7067, 69eqtr3d 2767 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) = (♯‘𝐴))
7170oveq1d 7434 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1) = ((♯‘𝐴) + 1))
7263, 71eqtrd 2765 . . . . . . . . . . . 12 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘dom 𝑂) = ((♯‘𝐴) + 1))
7372fveq2d 6900 . . . . . . . . . . 11 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘(𝐺‘dom 𝑂)) = (𝐺‘((♯‘𝐴) + 1)))
74 isof1o 7330 . . . . . . . . . . . . 13 (𝐺 Isom E , < (ω, ℕ) → 𝐺:ω–1-1-onto→ℕ)
759, 74ax-mp 5 . . . . . . . . . . . 12 𝐺:ω–1-1-onto→ℕ
76 f1ocnvfv1 7285 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→ℕ ∧ dom 𝑂 ∈ ω) → (𝐺‘(𝐺‘dom 𝑂)) = dom 𝑂)
7775, 56, 76sylancr 585 . . . . . . . . . . 11 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘(𝐺‘dom 𝑂)) = dom 𝑂)
7873, 77eqtr3d 2767 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘((♯‘𝐴) + 1)) = dom 𝑂)
7978ineq2d 4210 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ (𝐺‘((♯‘𝐴) + 1))) = (ω ∩ dom 𝑂))
80 ordom 7881 . . . . . . . . . . 11 Ord ω
81 ordelss 6387 . . . . . . . . . . 11 ((Ord ω ∧ dom 𝑂 ∈ ω) → dom 𝑂 ⊆ ω)
8280, 56, 81sylancr 585 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ⊆ ω)
83 sseqin2 4213 . . . . . . . . . 10 (dom 𝑂 ⊆ ω ↔ (ω ∩ dom 𝑂) = dom 𝑂)
8482, 83sylib 217 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ dom 𝑂) = dom 𝑂)
8579, 84eqtrd 2765 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ (𝐺‘((♯‘𝐴) + 1))) = dom 𝑂)
8614, 85eqtrid 2777 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐶 = dom 𝑂)
87 isoeq5 7328 . . . . . . 7 (𝐶 = dom 𝑂 → ((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂)))
8886, 87syl 17 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂)))
8944, 88mpbid 231 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂))
9045oiiso 9562 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
9148, 49, 90syl2anc 582 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
92 isotr 7343 . . . . 5 (((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂) ∧ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) → (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
9389, 91, 92syl2anc 582 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
94 isof1o 7330 . . . 4 ((𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴) → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))–1-1-onto𝐴)
95 f1of 6838 . . . 4 ((𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))⟶𝐴)
9693, 94, 953syl 18 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))⟶𝐴)
97 fzfid 13974 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (1...(♯‘𝐴)) ∈ Fin)
9896, 97fexd 7239 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)) ∈ V)
99 isoeq1 7324 . 2 (𝑓 = (𝑂 ∘ (𝐺𝐵)) → (𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴) ↔ (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴)))
10098, 93, 99spcedv 3582 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  Vcvv 3461  cin 3943  wss 3944  {csn 4630   class class class wbr 5149  cmpt 5232   E cep 5581   Or wor 5589   We wwe 5632  ccnv 5677  dom cdm 5678  cres 5680  cima 5681  ccom 5682  Ord word 6370  Oncon0 6371  wf 6545  1-1-ontowf1o 6548  cfv 6549   Isom wiso 6550  (class class class)co 7419  ωcom 7871  reccrdg 8430  cen 8961  Fincfn 8964  OrdIsocoi 9534  cardccrd 9960  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476  cn 12245  0cn0 12505  cz 12591  cuz 12855  ...cfz 13519  chash 14325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-hash 14326
This theorem is referenced by:  fz1iso  14459
  Copyright terms: Public domain W3C validator