Step | Hyp | Ref
| Expression |
1 | | hashcl 14312 |
. . . . . . . . 9
β’ (π΄ β Fin β
(β―βπ΄) β
β0) |
2 | 1 | adantl 482 |
. . . . . . . 8
β’ ((π
Or π΄ β§ π΄ β Fin) β (β―βπ΄) β
β0) |
3 | | nnuz 12861 |
. . . . . . . . . . 11
β’ β =
(β€β₯β1) |
4 | | 1z 12588 |
. . . . . . . . . . . . 13
β’ 1 β
β€ |
5 | | fz1iso.1 |
. . . . . . . . . . . . 13
β’ πΊ = (rec((π β V β¦ (π + 1)), 1) βΎ Ο) |
6 | 4, 5 | om2uzisoi 13915 |
. . . . . . . . . . . 12
β’ πΊ Isom E , < (Ο,
(β€β₯β1)) |
7 | | isoeq5 7314 |
. . . . . . . . . . . 12
β’ (β
= (β€β₯β1) β (πΊ Isom E , < (Ο, β) β
πΊ Isom E , < (Ο,
(β€β₯β1)))) |
8 | 6, 7 | mpbiri 257 |
. . . . . . . . . . 11
β’ (β
= (β€β₯β1) β πΊ Isom E , < (Ο,
β)) |
9 | 3, 8 | ax-mp 5 |
. . . . . . . . . 10
β’ πΊ Isom E , < (Ο,
β) |
10 | | isocnv 7323 |
. . . . . . . . . 10
β’ (πΊ Isom E , < (Ο,
β) β β‘πΊ Isom < , E (β,
Ο)) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . 9
β’ β‘πΊ Isom < , E (β,
Ο) |
12 | | nn0p1nn 12507 |
. . . . . . . . 9
β’
((β―βπ΄)
β β0 β ((β―βπ΄) + 1) β β) |
13 | | fz1iso.2 |
. . . . . . . . . 10
β’ π΅ = (β β© (β‘ < β {((β―βπ΄) + 1)})) |
14 | | fz1iso.3 |
. . . . . . . . . . 11
β’ πΆ = (Ο β© (β‘πΊβ((β―βπ΄) + 1))) |
15 | | fvex 6901 |
. . . . . . . . . . . . 13
β’ (β‘πΊβ((β―βπ΄) + 1)) β V |
16 | 15 | epini 6092 |
. . . . . . . . . . . 12
β’ (β‘ E β {(β‘πΊβ((β―βπ΄) + 1))}) = (β‘πΊβ((β―βπ΄) + 1)) |
17 | 16 | ineq2i 4208 |
. . . . . . . . . . 11
β’ (Ο
β© (β‘ E β {(β‘πΊβ((β―βπ΄) + 1))})) = (Ο β© (β‘πΊβ((β―βπ΄) + 1))) |
18 | 14, 17 | eqtr4i 2763 |
. . . . . . . . . 10
β’ πΆ = (Ο β© (β‘ E β {(β‘πΊβ((β―βπ΄) + 1))})) |
19 | 13, 18 | isoini2 7332 |
. . . . . . . . 9
β’ ((β‘πΊ Isom < , E (β, Ο) β§
((β―βπ΄) + 1)
β β) β (β‘πΊ βΎ π΅) Isom < , E (π΅, πΆ)) |
20 | 11, 12, 19 | sylancr 587 |
. . . . . . . 8
β’
((β―βπ΄)
β β0 β (β‘πΊ βΎ π΅) Isom < , E (π΅, πΆ)) |
21 | 2, 20 | syl 17 |
. . . . . . 7
β’ ((π
Or π΄ β§ π΄ β Fin) β (β‘πΊ βΎ π΅) Isom < , E (π΅, πΆ)) |
22 | | nnz 12575 |
. . . . . . . . . . . . 13
β’ (π β β β π β
β€) |
23 | 2 | nn0zd 12580 |
. . . . . . . . . . . . 13
β’ ((π
Or π΄ β§ π΄ β Fin) β (β―βπ΄) β
β€) |
24 | | eluz 12832 |
. . . . . . . . . . . . 13
β’ ((π β β€ β§
(β―βπ΄) β
β€) β ((β―βπ΄) β (β€β₯βπ) β π β€ (β―βπ΄))) |
25 | 22, 23, 24 | syl2anr 597 |
. . . . . . . . . . . 12
β’ (((π
Or π΄ β§ π΄ β Fin) β§ π β β) β ((β―βπ΄) β
(β€β₯βπ) β π β€ (β―βπ΄))) |
26 | | zleltp1 12609 |
. . . . . . . . . . . . . 14
β’ ((π β β€ β§
(β―βπ΄) β
β€) β (π β€
(β―βπ΄) β
π <
((β―βπ΄) +
1))) |
27 | 22, 23, 26 | syl2anr 597 |
. . . . . . . . . . . . 13
β’ (((π
Or π΄ β§ π΄ β Fin) β§ π β β) β (π β€ (β―βπ΄) β π < ((β―βπ΄) + 1))) |
28 | | ovex 7438 |
. . . . . . . . . . . . . 14
β’
((β―βπ΄) +
1) β V |
29 | | vex 3478 |
. . . . . . . . . . . . . . 15
β’ π β V |
30 | 29 | eliniseg 6090 |
. . . . . . . . . . . . . 14
β’
(((β―βπ΄)
+ 1) β V β (π
β (β‘ < β
{((β―βπ΄) + 1)})
β π <
((β―βπ΄) +
1))) |
31 | 28, 30 | ax-mp 5 |
. . . . . . . . . . . . 13
β’ (π β (β‘ < β {((β―βπ΄) + 1)}) β π < ((β―βπ΄) + 1)) |
32 | 27, 31 | bitr4di 288 |
. . . . . . . . . . . 12
β’ (((π
Or π΄ β§ π΄ β Fin) β§ π β β) β (π β€ (β―βπ΄) β π β (β‘ < β {((β―βπ΄) + 1)}))) |
33 | 25, 32 | bitr2d 279 |
. . . . . . . . . . 11
β’ (((π
Or π΄ β§ π΄ β Fin) β§ π β β) β (π β (β‘ < β {((β―βπ΄) + 1)}) β
(β―βπ΄) β
(β€β₯βπ))) |
34 | 33 | pm5.32da 579 |
. . . . . . . . . 10
β’ ((π
Or π΄ β§ π΄ β Fin) β ((π β β β§ π β (β‘ < β {((β―βπ΄) + 1)})) β (π β β β§
(β―βπ΄) β
(β€β₯βπ)))) |
35 | 13 | elin2 4196 |
. . . . . . . . . 10
β’ (π β π΅ β (π β β β§ π β (β‘ < β {((β―βπ΄) + 1)}))) |
36 | | elfzuzb 13491 |
. . . . . . . . . . 11
β’ (π β
(1...(β―βπ΄))
β (π β
(β€β₯β1) β§ (β―βπ΄) β (β€β₯βπ))) |
37 | | elnnuz 12862 |
. . . . . . . . . . . 12
β’ (π β β β π β
(β€β₯β1)) |
38 | 37 | anbi1i 624 |
. . . . . . . . . . 11
β’ ((π β β β§
(β―βπ΄) β
(β€β₯βπ)) β (π β (β€β₯β1)
β§ (β―βπ΄)
β (β€β₯βπ))) |
39 | 36, 38 | bitr4i 277 |
. . . . . . . . . 10
β’ (π β
(1...(β―βπ΄))
β (π β β
β§ (β―βπ΄)
β (β€β₯βπ))) |
40 | 34, 35, 39 | 3bitr4g 313 |
. . . . . . . . 9
β’ ((π
Or π΄ β§ π΄ β Fin) β (π β π΅ β π β (1...(β―βπ΄)))) |
41 | 40 | eqrdv 2730 |
. . . . . . . 8
β’ ((π
Or π΄ β§ π΄ β Fin) β π΅ = (1...(β―βπ΄))) |
42 | | isoeq4 7313 |
. . . . . . . 8
β’ (π΅ = (1...(β―βπ΄)) β ((β‘πΊ βΎ π΅) Isom < , E (π΅, πΆ) β (β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), πΆ))) |
43 | 41, 42 | syl 17 |
. . . . . . 7
β’ ((π
Or π΄ β§ π΄ β Fin) β ((β‘πΊ βΎ π΅) Isom < , E (π΅, πΆ) β (β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), πΆ))) |
44 | 21, 43 | mpbid 231 |
. . . . . 6
β’ ((π
Or π΄ β§ π΄ β Fin) β (β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), πΆ)) |
45 | | fz1iso.4 |
. . . . . . . . . . . . . . . . . 18
β’ π = OrdIso(π
, π΄) |
46 | 45 | oion 9527 |
. . . . . . . . . . . . . . . . 17
β’ (π΄ β Fin β dom π β On) |
47 | 46 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π
Or π΄ β§ π΄ β Fin) β dom π β On) |
48 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
β’ ((π
Or π΄ β§ π΄ β Fin) β π΄ β Fin) |
49 | | wofi 9288 |
. . . . . . . . . . . . . . . . . 18
β’ ((π
Or π΄ β§ π΄ β Fin) β π
We π΄) |
50 | 45 | oien 9529 |
. . . . . . . . . . . . . . . . . 18
β’ ((π΄ β Fin β§ π
We π΄) β dom π β π΄) |
51 | 48, 49, 50 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ ((π
Or π΄ β§ π΄ β Fin) β dom π β π΄) |
52 | | enfii 9185 |
. . . . . . . . . . . . . . . . 17
β’ ((π΄ β Fin β§ dom π β π΄) β dom π β Fin) |
53 | 48, 51, 52 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ ((π
Or π΄ β§ π΄ β Fin) β dom π β Fin) |
54 | 47, 53 | elind 4193 |
. . . . . . . . . . . . . . 15
β’ ((π
Or π΄ β§ π΄ β Fin) β dom π β (On β© Fin)) |
55 | | onfin2 9227 |
. . . . . . . . . . . . . . 15
β’ Ο =
(On β© Fin) |
56 | 54, 55 | eleqtrrdi 2844 |
. . . . . . . . . . . . . 14
β’ ((π
Or π΄ β§ π΄ β Fin) β dom π β Ο) |
57 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(rec((π β V
β¦ (π + 1)), 0)
βΎ Ο) = (rec((π
β V β¦ (π + 1)),
0) βΎ Ο) |
58 | | 0z 12565 |
. . . . . . . . . . . . . . . 16
β’ 0 β
β€ |
59 | 5, 57, 4, 58 | uzrdgxfr 13928 |
. . . . . . . . . . . . . . 15
β’ (dom
π β Ο β
(πΊβdom π) = (((rec((π β V β¦ (π + 1)), 0) βΎ Ο)βdom π) + (1 β
0))) |
60 | | 1m0e1 12329 |
. . . . . . . . . . . . . . . 16
β’ (1
β 0) = 1 |
61 | 60 | oveq2i 7416 |
. . . . . . . . . . . . . . 15
β’
(((rec((π β V
β¦ (π + 1)), 0)
βΎ Ο)βdom π) + (1 β 0)) = (((rec((π β V β¦ (π + 1)), 0) βΎ
Ο)βdom π) +
1) |
62 | 59, 61 | eqtrdi 2788 |
. . . . . . . . . . . . . 14
β’ (dom
π β Ο β
(πΊβdom π) = (((rec((π β V β¦ (π + 1)), 0) βΎ Ο)βdom π) + 1)) |
63 | 56, 62 | syl 17 |
. . . . . . . . . . . . 13
β’ ((π
Or π΄ β§ π΄ β Fin) β (πΊβdom π) = (((rec((π β V β¦ (π + 1)), 0) βΎ Ο)βdom π) + 1)) |
64 | 51 | ensymd 8997 |
. . . . . . . . . . . . . . . . 17
β’ ((π
Or π΄ β§ π΄ β Fin) β π΄ β dom π) |
65 | | cardennn 9974 |
. . . . . . . . . . . . . . . . 17
β’ ((π΄ β dom π β§ dom π β Ο) β (cardβπ΄) = dom π) |
66 | 64, 56, 65 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ ((π
Or π΄ β§ π΄ β Fin) β (cardβπ΄) = dom π) |
67 | 66 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ ((π
Or π΄ β§ π΄ β Fin) β ((rec((π β V β¦ (π + 1)), 0) βΎ
Ο)β(cardβπ΄)) = ((rec((π β V β¦ (π + 1)), 0) βΎ Ο)βdom π)) |
68 | 57 | hashgval 14289 |
. . . . . . . . . . . . . . . 16
β’ (π΄ β Fin β ((rec((π β V β¦ (π + 1)), 0) βΎ
Ο)β(cardβπ΄)) = (β―βπ΄)) |
69 | 68 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((π
Or π΄ β§ π΄ β Fin) β ((rec((π β V β¦ (π + 1)), 0) βΎ
Ο)β(cardβπ΄)) = (β―βπ΄)) |
70 | 67, 69 | eqtr3d 2774 |
. . . . . . . . . . . . . 14
β’ ((π
Or π΄ β§ π΄ β Fin) β ((rec((π β V β¦ (π + 1)), 0) βΎ
Ο)βdom π) =
(β―βπ΄)) |
71 | 70 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ ((π
Or π΄ β§ π΄ β Fin) β (((rec((π β V β¦ (π + 1)), 0) βΎ
Ο)βdom π) + 1)
= ((β―βπ΄) +
1)) |
72 | 63, 71 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ ((π
Or π΄ β§ π΄ β Fin) β (πΊβdom π) = ((β―βπ΄) + 1)) |
73 | 72 | fveq2d 6892 |
. . . . . . . . . . 11
β’ ((π
Or π΄ β§ π΄ β Fin) β (β‘πΊβ(πΊβdom π)) = (β‘πΊβ((β―βπ΄) + 1))) |
74 | | isof1o 7316 |
. . . . . . . . . . . . 13
β’ (πΊ Isom E , < (Ο,
β) β πΊ:Οβ1-1-ontoββ) |
75 | 9, 74 | ax-mp 5 |
. . . . . . . . . . . 12
β’ πΊ:Οβ1-1-ontoββ |
76 | | f1ocnvfv1 7270 |
. . . . . . . . . . . 12
β’ ((πΊ:Οβ1-1-ontoββ β§ dom π β Ο) β (β‘πΊβ(πΊβdom π)) = dom π) |
77 | 75, 56, 76 | sylancr 587 |
. . . . . . . . . . 11
β’ ((π
Or π΄ β§ π΄ β Fin) β (β‘πΊβ(πΊβdom π)) = dom π) |
78 | 73, 77 | eqtr3d 2774 |
. . . . . . . . . 10
β’ ((π
Or π΄ β§ π΄ β Fin) β (β‘πΊβ((β―βπ΄) + 1)) = dom π) |
79 | 78 | ineq2d 4211 |
. . . . . . . . 9
β’ ((π
Or π΄ β§ π΄ β Fin) β (Ο β© (β‘πΊβ((β―βπ΄) + 1))) = (Ο β© dom π)) |
80 | | ordom 7861 |
. . . . . . . . . . 11
β’ Ord
Ο |
81 | | ordelss 6377 |
. . . . . . . . . . 11
β’ ((Ord
Ο β§ dom π β
Ο) β dom π
β Ο) |
82 | 80, 56, 81 | sylancr 587 |
. . . . . . . . . 10
β’ ((π
Or π΄ β§ π΄ β Fin) β dom π β Ο) |
83 | | sseqin2 4214 |
. . . . . . . . . 10
β’ (dom
π β Ο β
(Ο β© dom π) = dom
π) |
84 | 82, 83 | sylib 217 |
. . . . . . . . 9
β’ ((π
Or π΄ β§ π΄ β Fin) β (Ο β© dom π) = dom π) |
85 | 79, 84 | eqtrd 2772 |
. . . . . . . 8
β’ ((π
Or π΄ β§ π΄ β Fin) β (Ο β© (β‘πΊβ((β―βπ΄) + 1))) = dom π) |
86 | 14, 85 | eqtrid 2784 |
. . . . . . 7
β’ ((π
Or π΄ β§ π΄ β Fin) β πΆ = dom π) |
87 | | isoeq5 7314 |
. . . . . . 7
β’ (πΆ = dom π β ((β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), πΆ) β (β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), dom π))) |
88 | 86, 87 | syl 17 |
. . . . . 6
β’ ((π
Or π΄ β§ π΄ β Fin) β ((β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), πΆ) β (β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), dom π))) |
89 | 44, 88 | mpbid 231 |
. . . . 5
β’ ((π
Or π΄ β§ π΄ β Fin) β (β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), dom π)) |
90 | 45 | oiiso 9528 |
. . . . . 6
β’ ((π΄ β Fin β§ π
We π΄) β π Isom E , π
(dom π, π΄)) |
91 | 48, 49, 90 | syl2anc 584 |
. . . . 5
β’ ((π
Or π΄ β§ π΄ β Fin) β π Isom E , π
(dom π, π΄)) |
92 | | isotr 7329 |
. . . . 5
β’ (((β‘πΊ βΎ π΅) Isom < , E ((1...(β―βπ΄)), dom π) β§ π Isom E , π
(dom π, π΄)) β (π β (β‘πΊ βΎ π΅)) Isom < , π
((1...(β―βπ΄)), π΄)) |
93 | 89, 91, 92 | syl2anc 584 |
. . . 4
β’ ((π
Or π΄ β§ π΄ β Fin) β (π β (β‘πΊ βΎ π΅)) Isom < , π
((1...(β―βπ΄)), π΄)) |
94 | | isof1o 7316 |
. . . 4
β’ ((π β (β‘πΊ βΎ π΅)) Isom < , π
((1...(β―βπ΄)), π΄) β (π β (β‘πΊ βΎ π΅)):(1...(β―βπ΄))β1-1-ontoβπ΄) |
95 | | f1of 6830 |
. . . 4
β’ ((π β (β‘πΊ βΎ π΅)):(1...(β―βπ΄))β1-1-ontoβπ΄ β (π β (β‘πΊ βΎ π΅)):(1...(β―βπ΄))βΆπ΄) |
96 | 93, 94, 95 | 3syl 18 |
. . 3
β’ ((π
Or π΄ β§ π΄ β Fin) β (π β (β‘πΊ βΎ π΅)):(1...(β―βπ΄))βΆπ΄) |
97 | | fzfid 13934 |
. . 3
β’ ((π
Or π΄ β§ π΄ β Fin) β
(1...(β―βπ΄))
β Fin) |
98 | 96, 97 | fexd 7225 |
. 2
β’ ((π
Or π΄ β§ π΄ β Fin) β (π β (β‘πΊ βΎ π΅)) β V) |
99 | | isoeq1 7310 |
. 2
β’ (π = (π β (β‘πΊ βΎ π΅)) β (π Isom < , π
((1...(β―βπ΄)), π΄) β (π β (β‘πΊ βΎ π΅)) Isom < , π
((1...(β―βπ΄)), π΄))) |
100 | 98, 93, 99 | spcedv 3588 |
1
β’ ((π
Or π΄ β§ π΄ β Fin) β βπ π Isom < , π
((1...(β―βπ΄)), π΄)) |