MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz1isolem Structured version   Visualization version   GIF version

Theorem fz1isolem 14368
Description: Lemma for fz1iso 14369. (Contributed by Mario Carneiro, 2-Apr-2014.)
Hypotheses
Ref Expression
fz1iso.1 𝐺 = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
fz1iso.2 𝐵 = (ℕ ∩ ( < “ {((♯‘𝐴) + 1)}))
fz1iso.3 𝐶 = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
fz1iso.4 𝑂 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
fz1isolem ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
Distinct variable groups:   𝑓,𝑛,𝐴   𝐵,𝑓   𝑓,𝐺   𝑓,𝑂   𝑅,𝑓
Allowed substitution hints:   𝐵(𝑛)   𝐶(𝑓,𝑛)   𝑅(𝑛)   𝐺(𝑛)   𝑂(𝑛)

Proof of Theorem fz1isolem
StepHypRef Expression
1 hashcl 14263 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
21adantl 481 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3 nnuz 12775 . . . . . . . . . . 11 ℕ = (ℤ‘1)
4 1z 12502 . . . . . . . . . . . . 13 1 ∈ ℤ
5 fz1iso.1 . . . . . . . . . . . . 13 𝐺 = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
64, 5om2uzisoi 13861 . . . . . . . . . . . 12 𝐺 Isom E , < (ω, (ℤ‘1))
7 isoeq5 7255 . . . . . . . . . . . 12 (ℕ = (ℤ‘1) → (𝐺 Isom E , < (ω, ℕ) ↔ 𝐺 Isom E , < (ω, (ℤ‘1))))
86, 7mpbiri 258 . . . . . . . . . . 11 (ℕ = (ℤ‘1) → 𝐺 Isom E , < (ω, ℕ))
93, 8ax-mp 5 . . . . . . . . . 10 𝐺 Isom E , < (ω, ℕ)
10 isocnv 7264 . . . . . . . . . 10 (𝐺 Isom E , < (ω, ℕ) → 𝐺 Isom < , E (ℕ, ω))
119, 10ax-mp 5 . . . . . . . . 9 𝐺 Isom < , E (ℕ, ω)
12 nn0p1nn 12420 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) + 1) ∈ ℕ)
13 fz1iso.2 . . . . . . . . . 10 𝐵 = (ℕ ∩ ( < “ {((♯‘𝐴) + 1)}))
14 fz1iso.3 . . . . . . . . . . 11 𝐶 = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
15 fvex 6835 . . . . . . . . . . . . 13 (𝐺‘((♯‘𝐴) + 1)) ∈ V
1615epini 6044 . . . . . . . . . . . 12 ( E “ {(𝐺‘((♯‘𝐴) + 1))}) = (𝐺‘((♯‘𝐴) + 1))
1716ineq2i 4164 . . . . . . . . . . 11 (ω ∩ ( E “ {(𝐺‘((♯‘𝐴) + 1))})) = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
1814, 17eqtr4i 2757 . . . . . . . . . 10 𝐶 = (ω ∩ ( E “ {(𝐺‘((♯‘𝐴) + 1))}))
1913, 18isoini2 7273 . . . . . . . . 9 ((𝐺 Isom < , E (ℕ, ω) ∧ ((♯‘𝐴) + 1) ∈ ℕ) → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
2011, 12, 19sylancr 587 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ0 → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
212, 20syl 17 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
22 nnz 12489 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ → 𝑓 ∈ ℤ)
232nn0zd 12494 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (♯‘𝐴) ∈ ℤ)
24 eluz 12746 . . . . . . . . . . . . 13 ((𝑓 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → ((♯‘𝐴) ∈ (ℤ𝑓) ↔ 𝑓 ≤ (♯‘𝐴)))
2522, 23, 24syl2anr 597 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → ((♯‘𝐴) ∈ (ℤ𝑓) ↔ 𝑓 ≤ (♯‘𝐴)))
26 zleltp1 12523 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 < ((♯‘𝐴) + 1)))
2722, 23, 26syl2anr 597 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 < ((♯‘𝐴) + 1)))
28 ovex 7379 . . . . . . . . . . . . . 14 ((♯‘𝐴) + 1) ∈ V
29 vex 3440 . . . . . . . . . . . . . . 15 𝑓 ∈ V
3029eliniseg 6042 . . . . . . . . . . . . . 14 (((♯‘𝐴) + 1) ∈ V → (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ 𝑓 < ((♯‘𝐴) + 1)))
3128, 30ax-mp 5 . . . . . . . . . . . . 13 (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ 𝑓 < ((♯‘𝐴) + 1))
3227, 31bitr4di 289 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})))
3325, 32bitr2d 280 . . . . . . . . . . 11 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ (♯‘𝐴) ∈ (ℤ𝑓)))
3433pm5.32da 579 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝑓 ∈ ℕ ∧ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})) ↔ (𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓))))
3513elin2 4150 . . . . . . . . . 10 (𝑓𝐵 ↔ (𝑓 ∈ ℕ ∧ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})))
36 elfzuzb 13418 . . . . . . . . . . 11 (𝑓 ∈ (1...(♯‘𝐴)) ↔ (𝑓 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
37 elnnuz 12776 . . . . . . . . . . . 12 (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ‘1))
3837anbi1i 624 . . . . . . . . . . 11 ((𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓)) ↔ (𝑓 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
3936, 38bitr4i 278 . . . . . . . . . 10 (𝑓 ∈ (1...(♯‘𝐴)) ↔ (𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
4034, 35, 393bitr4g 314 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑓𝐵𝑓 ∈ (1...(♯‘𝐴))))
4140eqrdv 2729 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐵 = (1...(♯‘𝐴)))
42 isoeq4 7254 . . . . . . . 8 (𝐵 = (1...(♯‘𝐴)) → ((𝐺𝐵) Isom < , E (𝐵, 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶)))
4341, 42syl 17 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝐺𝐵) Isom < , E (𝐵, 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶)))
4421, 43mpbid 232 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶))
45 fz1iso.4 . . . . . . . . . . . . . . . . . 18 𝑂 = OrdIso(𝑅, 𝐴)
4645oion 9422 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Fin → dom 𝑂 ∈ On)
4746adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ On)
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
49 wofi 9173 . . . . . . . . . . . . . . . . . 18 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
5045oien 9424 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → dom 𝑂𝐴)
5148, 49, 50syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂𝐴)
52 enfii 9095 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Fin ∧ dom 𝑂𝐴) → dom 𝑂 ∈ Fin)
5348, 51, 52syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ Fin)
5447, 53elind 4147 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ (On ∩ Fin))
55 onfin2 9125 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
5654, 55eleqtrrdi 2842 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ ω)
57 eqid 2731 . . . . . . . . . . . . . . . 16 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)
58 0z 12479 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
595, 57, 4, 58uzrdgxfr 13874 . . . . . . . . . . . . . . 15 (dom 𝑂 ∈ ω → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + (1 − 0)))
60 1m0e1 12241 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
6160oveq2i 7357 . . . . . . . . . . . . . . 15 (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + (1 − 0)) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1)
6259, 61eqtrdi 2782 . . . . . . . . . . . . . 14 (dom 𝑂 ∈ ω → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1))
6356, 62syl 17 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1))
6451ensymd 8927 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ≈ dom 𝑂)
65 cardennn 9876 . . . . . . . . . . . . . . . . 17 ((𝐴 ≈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → (card‘𝐴) = dom 𝑂)
6664, 56, 65syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (card‘𝐴) = dom 𝑂)
6766fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂))
6857hashgval 14240 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
6968adantl 481 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
7067, 69eqtr3d 2768 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) = (♯‘𝐴))
7170oveq1d 7361 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1) = ((♯‘𝐴) + 1))
7263, 71eqtrd 2766 . . . . . . . . . . . 12 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘dom 𝑂) = ((♯‘𝐴) + 1))
7372fveq2d 6826 . . . . . . . . . . 11 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘(𝐺‘dom 𝑂)) = (𝐺‘((♯‘𝐴) + 1)))
74 isof1o 7257 . . . . . . . . . . . . 13 (𝐺 Isom E , < (ω, ℕ) → 𝐺:ω–1-1-onto→ℕ)
759, 74ax-mp 5 . . . . . . . . . . . 12 𝐺:ω–1-1-onto→ℕ
76 f1ocnvfv1 7210 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→ℕ ∧ dom 𝑂 ∈ ω) → (𝐺‘(𝐺‘dom 𝑂)) = dom 𝑂)
7775, 56, 76sylancr 587 . . . . . . . . . . 11 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘(𝐺‘dom 𝑂)) = dom 𝑂)
7873, 77eqtr3d 2768 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘((♯‘𝐴) + 1)) = dom 𝑂)
7978ineq2d 4167 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ (𝐺‘((♯‘𝐴) + 1))) = (ω ∩ dom 𝑂))
80 ordom 7806 . . . . . . . . . . 11 Ord ω
81 ordelss 6322 . . . . . . . . . . 11 ((Ord ω ∧ dom 𝑂 ∈ ω) → dom 𝑂 ⊆ ω)
8280, 56, 81sylancr 587 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ⊆ ω)
83 sseqin2 4170 . . . . . . . . . 10 (dom 𝑂 ⊆ ω ↔ (ω ∩ dom 𝑂) = dom 𝑂)
8482, 83sylib 218 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ dom 𝑂) = dom 𝑂)
8579, 84eqtrd 2766 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ (𝐺‘((♯‘𝐴) + 1))) = dom 𝑂)
8614, 85eqtrid 2778 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐶 = dom 𝑂)
87 isoeq5 7255 . . . . . . 7 (𝐶 = dom 𝑂 → ((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂)))
8886, 87syl 17 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂)))
8944, 88mpbid 232 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂))
9045oiiso 9423 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
9148, 49, 90syl2anc 584 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
92 isotr 7270 . . . . 5 (((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂) ∧ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) → (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
9389, 91, 92syl2anc 584 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
94 isof1o 7257 . . . 4 ((𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴) → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))–1-1-onto𝐴)
95 f1of 6763 . . . 4 ((𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))⟶𝐴)
9693, 94, 953syl 18 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))⟶𝐴)
97 fzfid 13880 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (1...(♯‘𝐴)) ∈ Fin)
9896, 97fexd 7161 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)) ∈ V)
99 isoeq1 7251 . 2 (𝑓 = (𝑂 ∘ (𝐺𝐵)) → (𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴) ↔ (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴)))
10098, 93, 99spcedv 3548 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cin 3896  wss 3897  {csn 4573   class class class wbr 5089  cmpt 5170   E cep 5513   Or wor 5521   We wwe 5566  ccnv 5613  dom cdm 5614  cres 5616  cima 5617  ccom 5618  Ord word 6305  Oncon0 6306  wf 6477  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  (class class class)co 7346  ωcom 7796  reccrdg 8328  cen 8866  Fincfn 8869  OrdIsocoi 9395  cardccrd 9828  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  fz1iso  14369
  Copyright terms: Public domain W3C validator