MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz1isolem Structured version   Visualization version   GIF version

Theorem fz1isolem 14426
Description: Lemma for fz1iso 14427. (Contributed by Mario Carneiro, 2-Apr-2014.)
Hypotheses
Ref Expression
fz1iso.1 𝐺 = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
fz1iso.2 𝐵 = (ℕ ∩ ( < “ {((♯‘𝐴) + 1)}))
fz1iso.3 𝐶 = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
fz1iso.4 𝑂 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
fz1isolem ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
Distinct variable groups:   𝑓,𝑛,𝐴   𝐵,𝑓   𝑓,𝐺   𝑓,𝑂   𝑅,𝑓
Allowed substitution hints:   𝐵(𝑛)   𝐶(𝑓,𝑛)   𝑅(𝑛)   𝐺(𝑛)   𝑂(𝑛)

Proof of Theorem fz1isolem
StepHypRef Expression
1 hashcl 14321 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
21adantl 481 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3 nnuz 12836 . . . . . . . . . . 11 ℕ = (ℤ‘1)
4 1z 12563 . . . . . . . . . . . . 13 1 ∈ ℤ
5 fz1iso.1 . . . . . . . . . . . . 13 𝐺 = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
64, 5om2uzisoi 13919 . . . . . . . . . . . 12 𝐺 Isom E , < (ω, (ℤ‘1))
7 isoeq5 7296 . . . . . . . . . . . 12 (ℕ = (ℤ‘1) → (𝐺 Isom E , < (ω, ℕ) ↔ 𝐺 Isom E , < (ω, (ℤ‘1))))
86, 7mpbiri 258 . . . . . . . . . . 11 (ℕ = (ℤ‘1) → 𝐺 Isom E , < (ω, ℕ))
93, 8ax-mp 5 . . . . . . . . . 10 𝐺 Isom E , < (ω, ℕ)
10 isocnv 7305 . . . . . . . . . 10 (𝐺 Isom E , < (ω, ℕ) → 𝐺 Isom < , E (ℕ, ω))
119, 10ax-mp 5 . . . . . . . . 9 𝐺 Isom < , E (ℕ, ω)
12 nn0p1nn 12481 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) + 1) ∈ ℕ)
13 fz1iso.2 . . . . . . . . . 10 𝐵 = (ℕ ∩ ( < “ {((♯‘𝐴) + 1)}))
14 fz1iso.3 . . . . . . . . . . 11 𝐶 = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
15 fvex 6871 . . . . . . . . . . . . 13 (𝐺‘((♯‘𝐴) + 1)) ∈ V
1615epini 6067 . . . . . . . . . . . 12 ( E “ {(𝐺‘((♯‘𝐴) + 1))}) = (𝐺‘((♯‘𝐴) + 1))
1716ineq2i 4180 . . . . . . . . . . 11 (ω ∩ ( E “ {(𝐺‘((♯‘𝐴) + 1))})) = (ω ∩ (𝐺‘((♯‘𝐴) + 1)))
1814, 17eqtr4i 2755 . . . . . . . . . 10 𝐶 = (ω ∩ ( E “ {(𝐺‘((♯‘𝐴) + 1))}))
1913, 18isoini2 7314 . . . . . . . . 9 ((𝐺 Isom < , E (ℕ, ω) ∧ ((♯‘𝐴) + 1) ∈ ℕ) → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
2011, 12, 19sylancr 587 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ0 → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
212, 20syl 17 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E (𝐵, 𝐶))
22 nnz 12550 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ → 𝑓 ∈ ℤ)
232nn0zd 12555 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (♯‘𝐴) ∈ ℤ)
24 eluz 12807 . . . . . . . . . . . . 13 ((𝑓 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → ((♯‘𝐴) ∈ (ℤ𝑓) ↔ 𝑓 ≤ (♯‘𝐴)))
2522, 23, 24syl2anr 597 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → ((♯‘𝐴) ∈ (ℤ𝑓) ↔ 𝑓 ≤ (♯‘𝐴)))
26 zleltp1 12584 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 < ((♯‘𝐴) + 1)))
2722, 23, 26syl2anr 597 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 < ((♯‘𝐴) + 1)))
28 ovex 7420 . . . . . . . . . . . . . 14 ((♯‘𝐴) + 1) ∈ V
29 vex 3451 . . . . . . . . . . . . . . 15 𝑓 ∈ V
3029eliniseg 6065 . . . . . . . . . . . . . 14 (((♯‘𝐴) + 1) ∈ V → (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ 𝑓 < ((♯‘𝐴) + 1)))
3128, 30ax-mp 5 . . . . . . . . . . . . 13 (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ 𝑓 < ((♯‘𝐴) + 1))
3227, 31bitr4di 289 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ≤ (♯‘𝐴) ↔ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})))
3325, 32bitr2d 280 . . . . . . . . . . 11 (((𝑅 Or 𝐴𝐴 ∈ Fin) ∧ 𝑓 ∈ ℕ) → (𝑓 ∈ ( < “ {((♯‘𝐴) + 1)}) ↔ (♯‘𝐴) ∈ (ℤ𝑓)))
3433pm5.32da 579 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝑓 ∈ ℕ ∧ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})) ↔ (𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓))))
3513elin2 4166 . . . . . . . . . 10 (𝑓𝐵 ↔ (𝑓 ∈ ℕ ∧ 𝑓 ∈ ( < “ {((♯‘𝐴) + 1)})))
36 elfzuzb 13479 . . . . . . . . . . 11 (𝑓 ∈ (1...(♯‘𝐴)) ↔ (𝑓 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
37 elnnuz 12837 . . . . . . . . . . . 12 (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ‘1))
3837anbi1i 624 . . . . . . . . . . 11 ((𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓)) ↔ (𝑓 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
3936, 38bitr4i 278 . . . . . . . . . 10 (𝑓 ∈ (1...(♯‘𝐴)) ↔ (𝑓 ∈ ℕ ∧ (♯‘𝐴) ∈ (ℤ𝑓)))
4034, 35, 393bitr4g 314 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑓𝐵𝑓 ∈ (1...(♯‘𝐴))))
4140eqrdv 2727 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐵 = (1...(♯‘𝐴)))
42 isoeq4 7295 . . . . . . . 8 (𝐵 = (1...(♯‘𝐴)) → ((𝐺𝐵) Isom < , E (𝐵, 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶)))
4341, 42syl 17 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝐺𝐵) Isom < , E (𝐵, 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶)))
4421, 43mpbid 232 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶))
45 fz1iso.4 . . . . . . . . . . . . . . . . . 18 𝑂 = OrdIso(𝑅, 𝐴)
4645oion 9489 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Fin → dom 𝑂 ∈ On)
4746adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ On)
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
49 wofi 9236 . . . . . . . . . . . . . . . . . 18 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
5045oien 9491 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → dom 𝑂𝐴)
5148, 49, 50syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂𝐴)
52 enfii 9150 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Fin ∧ dom 𝑂𝐴) → dom 𝑂 ∈ Fin)
5348, 51, 52syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ Fin)
5447, 53elind 4163 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ (On ∩ Fin))
55 onfin2 9180 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
5654, 55eleqtrrdi 2839 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ∈ ω)
57 eqid 2729 . . . . . . . . . . . . . . . 16 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)
58 0z 12540 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
595, 57, 4, 58uzrdgxfr 13932 . . . . . . . . . . . . . . 15 (dom 𝑂 ∈ ω → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + (1 − 0)))
60 1m0e1 12302 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
6160oveq2i 7398 . . . . . . . . . . . . . . 15 (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + (1 − 0)) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1)
6259, 61eqtrdi 2780 . . . . . . . . . . . . . 14 (dom 𝑂 ∈ ω → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1))
6356, 62syl 17 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘dom 𝑂) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1))
6451ensymd 8976 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ≈ dom 𝑂)
65 cardennn 9936 . . . . . . . . . . . . . . . . 17 ((𝐴 ≈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → (card‘𝐴) = dom 𝑂)
6664, 56, 65syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (card‘𝐴) = dom 𝑂)
6766fveq2d 6862 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂))
6857hashgval 14298 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
6968adantl 481 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
7067, 69eqtr3d 2766 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) = (♯‘𝐴))
7170oveq1d 7402 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 0) ↾ ω)‘dom 𝑂) + 1) = ((♯‘𝐴) + 1))
7263, 71eqtrd 2764 . . . . . . . . . . . 12 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘dom 𝑂) = ((♯‘𝐴) + 1))
7372fveq2d 6862 . . . . . . . . . . 11 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘(𝐺‘dom 𝑂)) = (𝐺‘((♯‘𝐴) + 1)))
74 isof1o 7298 . . . . . . . . . . . . 13 (𝐺 Isom E , < (ω, ℕ) → 𝐺:ω–1-1-onto→ℕ)
759, 74ax-mp 5 . . . . . . . . . . . 12 𝐺:ω–1-1-onto→ℕ
76 f1ocnvfv1 7251 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→ℕ ∧ dom 𝑂 ∈ ω) → (𝐺‘(𝐺‘dom 𝑂)) = dom 𝑂)
7775, 56, 76sylancr 587 . . . . . . . . . . 11 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘(𝐺‘dom 𝑂)) = dom 𝑂)
7873, 77eqtr3d 2766 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺‘((♯‘𝐴) + 1)) = dom 𝑂)
7978ineq2d 4183 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ (𝐺‘((♯‘𝐴) + 1))) = (ω ∩ dom 𝑂))
80 ordom 7852 . . . . . . . . . . 11 Ord ω
81 ordelss 6348 . . . . . . . . . . 11 ((Ord ω ∧ dom 𝑂 ∈ ω) → dom 𝑂 ⊆ ω)
8280, 56, 81sylancr 587 . . . . . . . . . 10 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom 𝑂 ⊆ ω)
83 sseqin2 4186 . . . . . . . . . 10 (dom 𝑂 ⊆ ω ↔ (ω ∩ dom 𝑂) = dom 𝑂)
8482, 83sylib 218 . . . . . . . . 9 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ dom 𝑂) = dom 𝑂)
8579, 84eqtrd 2764 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (ω ∩ (𝐺‘((♯‘𝐴) + 1))) = dom 𝑂)
8614, 85eqtrid 2776 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐶 = dom 𝑂)
87 isoeq5 7296 . . . . . . 7 (𝐶 = dom 𝑂 → ((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂)))
8886, 87syl 17 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), 𝐶) ↔ (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂)))
8944, 88mpbid 232 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂))
9045oiiso 9490 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
9148, 49, 90syl2anc 584 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
92 isotr 7311 . . . . 5 (((𝐺𝐵) Isom < , E ((1...(♯‘𝐴)), dom 𝑂) ∧ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) → (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
9389, 91, 92syl2anc 584 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
94 isof1o 7298 . . . 4 ((𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴) → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))–1-1-onto𝐴)
95 f1of 6800 . . . 4 ((𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))–1-1-onto𝐴 → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))⟶𝐴)
9693, 94, 953syl 18 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)):(1...(♯‘𝐴))⟶𝐴)
97 fzfid 13938 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (1...(♯‘𝐴)) ∈ Fin)
9896, 97fexd 7201 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (𝑂 ∘ (𝐺𝐵)) ∈ V)
99 isoeq1 7292 . 2 (𝑓 = (𝑂 ∘ (𝐺𝐵)) → (𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴) ↔ (𝑂 ∘ (𝐺𝐵)) Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴)))
10098, 93, 99spcedv 3564 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cin 3913  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   E cep 5537   Or wor 5545   We wwe 5590  ccnv 5637  dom cdm 5638  cres 5640  cima 5641  ccom 5642  Ord word 6331  Oncon0 6332  wf 6507  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512  (class class class)co 7387  ωcom 7842  reccrdg 8377  cen 8915  Fincfn 8918  OrdIsocoi 9462  cardccrd 9888  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  fz1iso  14427
  Copyright terms: Public domain W3C validator