![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iniseg | Structured version Visualization version GIF version |
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
iniseg | ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3493 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | vex 3479 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | eliniseg 6094 | . . 3 ⊢ (𝐵 ∈ V → (𝑥 ∈ (◡𝐴 “ {𝐵}) ↔ 𝑥𝐴𝐵)) |
4 | 3 | eqabdv 2868 | . 2 ⊢ (𝐵 ∈ V → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {cab 2710 Vcvv 3475 {csn 4629 class class class wbr 5149 ◡ccnv 5676 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: inisegn0 6098 dffr3 6099 dfse2 6100 dfpred2 6311 predres 6341 |
Copyright terms: Public domain | W3C validator |