MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iniseg Structured version   Visualization version   GIF version

Theorem iniseg 6068
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.)
Assertion
Ref Expression
iniseg (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem iniseg
StepHypRef Expression
1 elex 3468 . 2 (𝐵𝑉𝐵 ∈ V)
2 vex 3451 . . . 4 𝑥 ∈ V
32eliniseg 6065 . . 3 (𝐵 ∈ V → (𝑥 ∈ (𝐴 “ {𝐵}) ↔ 𝑥𝐴𝐵))
43eqabdv 2861 . 2 (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
51, 4syl 17 1 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  {csn 4589   class class class wbr 5107  ccnv 5637  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  inisegn0  6069  dffr3  6070  dfse2  6071  dfpred2  6284  predres  6312
  Copyright terms: Public domain W3C validator