MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqan12rd Structured version   Visualization version   GIF version

Theorem breqan12rd 5080
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqan12i.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
breqan12rd ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breqan12rd
StepHypRef Expression
1 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
2 breqan12i.2 . . 3 (𝜓𝐶 = 𝐷)
31, 2breqan12d 5079 . 2 ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))
43ancoms 459 1 ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530   class class class wbr 5063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064
This theorem is referenced by:  f1oweALT  7664  ledivdiv  11518  xltnegi  12599  ramub1lem1  16352  dvferm1  24497  dvferm2  24499  dvivthlem1  24520  ulmdvlem3  24905  gausslemma2dlem3  25858  lgsquad  25873  areacirclem4  34852  areacirclem5  34853  iccpartgt  43419
  Copyright terms: Public domain W3C validator