MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqan12rd Structured version   Visualization version   GIF version

Theorem breqan12rd 4860
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqan12i.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
breqan12rd ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breqan12rd
StepHypRef Expression
1 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
2 breqan12i.2 . . 3 (𝜓𝐶 = 𝐷)
31, 2breqan12d 4859 . 2 ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))
43ancoms 451 1 ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653   class class class wbr 4843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-br 4844
This theorem is referenced by:  f1oweALT  7385  ledivdiv  11204  xltnegi  12296  ramub1lem1  16063  dvferm1  24089  dvferm2  24091  dvivthlem1  24112  ulmdvlem3  24497  gausslemma2dlem3  25445  lgsquad  25460  areacirclem4  33991  areacirclem5  33992  iccpartgt  42203
  Copyright terms: Public domain W3C validator