MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqan12rd Structured version   Visualization version   GIF version

Theorem breqan12rd 5169
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breqan12i.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
breqan12rd ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breqan12rd
StepHypRef Expression
1 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
2 breqan12i.2 . . 3 (𝜓𝐶 = 𝐷)
31, 2breqan12d 5168 . 2 ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))
43ancoms 457 1 ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533   class class class wbr 5152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153
This theorem is referenced by:  f1oweALT  7982  ledivdiv  12141  xltnegi  13235  ramub1lem1  17002  dvferm1  25937  dvferm2  25939  dvivthlem1  25961  ulmdvlem3  26358  gausslemma2dlem3  27321  lgsquad  27336  areacirclem4  37217  areacirclem5  37218  iccpartgt  46796
  Copyright terms: Public domain W3C validator