MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcadd Structured version   Visualization version   GIF version

Theorem pcadd 16213
Description: An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcadd.1 (𝜑𝑃 ∈ ℙ)
pcadd.2 (𝜑𝐴 ∈ ℚ)
pcadd.3 (𝜑𝐵 ∈ ℚ)
pcadd.4 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
Assertion
Ref Expression
pcadd (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcadd
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcadd.2 . . 3 (𝜑𝐴 ∈ ℚ)
2 elq 12338 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
31, 2sylib 219 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
4 pcadd.3 . . 3 (𝜑𝐵 ∈ ℚ)
5 elq 12338 . . 3 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
64, 5sylib 219 . 2 (𝜑 → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
7 pcadd.1 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
8 pcxcl 16185 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
97, 1, 8syl2anc 584 . . . . . . 7 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℝ*)
109xrleidd 12533 . . . . . 6 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
1110adantr 481 . . . . 5 ((𝜑𝐵 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
12 oveq2 7153 . . . . . . 7 (𝐵 = 0 → (𝐴 + 𝐵) = (𝐴 + 0))
13 qcn 12350 . . . . . . . . 9 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
141, 13syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1514addid1d 10828 . . . . . . 7 (𝜑 → (𝐴 + 0) = 𝐴)
1612, 15sylan9eqr 2875 . . . . . 6 ((𝜑𝐵 = 0) → (𝐴 + 𝐵) = 𝐴)
1716oveq2d 7161 . . . . 5 ((𝜑𝐵 = 0) → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑃 pCnt 𝐴))
1811, 17breqtrrd 5085 . . . 4 ((𝜑𝐵 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
1918a1d 25 . . 3 ((𝜑𝐵 = 0) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
20 reeanv 3365 . . . 4 (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
21 reeanv 3365 . . . . . 6 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
227ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℙ)
23 prmnn 16006 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2422, 23syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℕ)
25 simplrl 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ∈ ℤ)
26 simprrl 777 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 = (𝑥 / 𝑦))
27 pc0 16179 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
2822, 27syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 0) = +∞)
294ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ∈ ℚ)
30 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ≠ 0)
31 pcqcl 16181 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℤ)
3222, 29, 30, 31syl12anc 832 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ ℤ)
3332zred 12075 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ ℝ)
34 ltpnf 12503 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 pCnt 𝐵) ∈ ℝ → (𝑃 pCnt 𝐵) < +∞)
35 rexr 10675 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 pCnt 𝐵) ∈ ℝ → (𝑃 pCnt 𝐵) ∈ ℝ*)
36 pnfxr 10683 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
37 xrltnle 10696 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 pCnt 𝐵) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑃 pCnt 𝐵) < +∞ ↔ ¬ +∞ ≤ (𝑃 pCnt 𝐵)))
3835, 36, 37sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 pCnt 𝐵) ∈ ℝ → ((𝑃 pCnt 𝐵) < +∞ ↔ ¬ +∞ ≤ (𝑃 pCnt 𝐵)))
3934, 38mpbid 233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 pCnt 𝐵) ∈ ℝ → ¬ +∞ ≤ (𝑃 pCnt 𝐵))
4033, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ +∞ ≤ (𝑃 pCnt 𝐵))
4128, 40eqnbrtrd 5075 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵))
42 pcadd.4 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
4342ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
44 oveq2 7153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
4544breq1d 5067 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = 0 → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵)))
4643, 45syl5ibcom 246 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 = 0 → (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵)))
4746necon3bd 3027 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (¬ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵) → 𝐴 ≠ 0))
4841, 47mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ≠ 0)
4926, 48eqnetrrd 3081 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 / 𝑦) ≠ 0)
50 simprll 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℕ)
5150nncnd 11642 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℂ)
5250nnne0d 11675 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ≠ 0)
5351, 52div0d 11403 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (0 / 𝑦) = 0)
54 oveq1 7152 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
5554eqeq1d 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
5653, 55syl5ibrcom 248 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
5756necon3d 3034 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
5849, 57mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ≠ 0)
59 pczcl 16173 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
6022, 25, 58, 59syl12anc 832 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑥) ∈ ℕ0)
6124, 60nnexpcld 13594 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℕ)
6261nncnd 11642 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ)
6362, 51mulcomd 10650 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦) = (𝑦 · (𝑃↑(𝑃 pCnt 𝑥))))
6463oveq2d 7161 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦)) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))))
6525zcnd 12076 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ∈ ℂ)
6622, 50pccld 16175 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑦) ∈ ℕ0)
6724, 66nnexpcld 13594 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℕ)
6867nncnd 11642 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ)
6961nnne0d 11675 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ≠ 0)
7067nnne0d 11675 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ≠ 0)
7165, 62, 51, 68, 69, 70, 52divdivdivd 11451 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦)))
7226oveq2d 7161 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
73 pcdiv 16177 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7422, 25, 58, 50, 73syl121anc 1367 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7572, 74eqtrd 2853 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7675oveq2d 7161 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) = (𝑃↑((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))))
7724nncnd 11642 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℂ)
7824nnne0d 11675 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ≠ 0)
7966nn0zd 12073 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑦) ∈ ℤ)
8060nn0zd 12073 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑥) ∈ ℤ)
8177, 78, 79, 80expsubd 13509 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) = ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦))))
8276, 81eqtrd 2853 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦))))
8382oveq2d 7161 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) = (𝐴 / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))))
8426oveq1d 7160 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))))
8565, 51, 62, 68, 52, 70, 69divdivdivd 11451 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))))
8683, 84, 853eqtrd 2857 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))))
8764, 71, 863eqtr4d 2863 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
8887oveq2d 7161 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐴)) · ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))) = ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
891ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ∈ ℚ)
9089, 13syl 17 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ∈ ℂ)
91 pcqcl 16181 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ)
9222, 89, 48, 91syl12anc 832 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ∈ ℤ)
9377, 78, 92expclzd 13503 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ)
9477, 78, 92expne0d 13504 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) ≠ 0)
9590, 93, 94divcan2d 11406 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴)
9688, 95eqtr2d 2854 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 = ((𝑃↑(𝑃 pCnt 𝐴)) · ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))))
97 simplrr 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ∈ ℤ)
98 simprrr 778 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 = (𝑧 / 𝑤))
9998, 30eqnetrrd 3081 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 / 𝑤) ≠ 0)
100 simprlr 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℕ)
101100nncnd 11642 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℂ)
102100nnne0d 11675 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ≠ 0)
103101, 102div0d 11403 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (0 / 𝑤) = 0)
104 oveq1 7152 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤))
105104eqeq1d 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0))
106103, 105syl5ibrcom 248 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 = 0 → (𝑧 / 𝑤) = 0))
107106necon3d 3034 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0))
10899, 107mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ≠ 0)
109 pczcl 16173 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℕ0)
11022, 97, 108, 109syl12anc 832 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑧) ∈ ℕ0)
11124, 110nnexpcld 13594 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℕ)
112111nncnd 11642 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ)
113112, 101mulcomd 10650 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤) = (𝑤 · (𝑃↑(𝑃 pCnt 𝑧))))
114113oveq2d 7161 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤)) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))))
11597zcnd 12076 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ∈ ℂ)
11622, 100pccld 16175 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑤) ∈ ℕ0)
11724, 116nnexpcld 13594 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℕ)
118117nncnd 11642 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ)
119111nnne0d 11675 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ≠ 0)
120117nnne0d 11675 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ≠ 0)
121115, 112, 101, 118, 119, 120, 102divdivdivd 11451 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤)))
12298oveq2d 7161 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤)))
123 pcdiv 16177 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
12422, 97, 108, 100, 123syl121anc 1367 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
125122, 124eqtrd 2853 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
126125oveq2d 7161 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) = (𝑃↑((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
127116nn0zd 12073 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑤) ∈ ℤ)
128110nn0zd 12073 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑧) ∈ ℤ)
12977, 78, 127, 128expsubd 13509 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) = ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤))))
130126, 129eqtrd 2853 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) = ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤))))
131130oveq2d 7161 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))) = (𝐵 / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))))
13298oveq1d 7160 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))))
133115, 101, 112, 118, 102, 120, 119divdivdivd 11451 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))))
134131, 132, 1333eqtrd 2857 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))))
135114, 121, 1343eqtr4d 2863 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))))
136135oveq2d 7161 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐵)) · ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))) = ((𝑃↑(𝑃 pCnt 𝐵)) · (𝐵 / (𝑃↑(𝑃 pCnt 𝐵)))))
137 qcn 12350 . . . . . . . . . . . 12 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
13829, 137syl 17 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ∈ ℂ)
13977, 78, 32expclzd 13503 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) ∈ ℂ)
14077, 78, 32expne0d 13504 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) ≠ 0)
141138, 139, 140divcan2d 11406 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐵)) · (𝐵 / (𝑃↑(𝑃 pCnt 𝐵)))) = 𝐵)
142136, 141eqtr2d 2854 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 = ((𝑃↑(𝑃 pCnt 𝐵)) · ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))))
143 eluz 12245 . . . . . . . . . . 11 (((𝑃 pCnt 𝐴) ∈ ℤ ∧ (𝑃 pCnt 𝐵) ∈ ℤ) → ((𝑃 pCnt 𝐵) ∈ (ℤ‘(𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
14492, 32, 143syl2anc 584 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃 pCnt 𝐵) ∈ (ℤ‘(𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
14543, 144mpbird 258 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ (ℤ‘(𝑃 pCnt 𝐴)))
146 pczdvds 16187 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥)
14722, 25, 58, 146syl12anc 832 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥)
14861nnzd 12074 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℤ)
149 dvdsval2 15598 . . . . . . . . . . . 12 (((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑥)) ≠ 0 ∧ 𝑥 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥 ↔ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ))
150148, 69, 25, 149syl3anc 1363 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥 ↔ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ))
151147, 150mpbid 233 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ)
152 pczndvds2 16191 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))))
15322, 25, 58, 152syl12anc 832 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))))
154151, 153jca 512 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥)))))
155 pcdvds 16188 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦)
15622, 50, 155syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦)
15767nnzd 12074 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℤ)
15850nnzd 12074 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℤ)
159 dvdsval2 15598 . . . . . . . . . . . . 13 (((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑦)) ≠ 0 ∧ 𝑦 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦 ↔ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ))
160157, 70, 158, 159syl3anc 1363 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦 ↔ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ))
161156, 160mpbid 233 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ)
16250nnred 11641 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℝ)
16367nnred 11641 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℝ)
16450nngt0d 11674 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < 𝑦)
16567nngt0d 11674 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑃↑(𝑃 pCnt 𝑦)))
166162, 163, 164, 165divgt0d 11563 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))
167 elnnz 11979 . . . . . . . . . . 11 ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ ↔ ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ ∧ 0 < (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))))
168161, 166, 167sylanbrc 583 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ)
169 pcndvds2 16192 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))
17022, 50, 169syl2anc 584 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))
171168, 170jca 512 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ ∧ ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))))
172 pczdvds 16187 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧)
17322, 97, 108, 172syl12anc 832 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧)
174111nnzd 12074 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℤ)
175 dvdsval2 15598 . . . . . . . . . . . 12 (((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑧)) ≠ 0 ∧ 𝑧 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧 ↔ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ))
176174, 119, 97, 175syl3anc 1363 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧 ↔ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ))
177173, 176mpbid 233 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ)
178 pczndvds2 16191 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))))
17922, 97, 108, 178syl12anc 832 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))))
180177, 179jca 512 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧)))))
181 pcdvds 16188 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤)
18222, 100, 181syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤)
183117nnzd 12074 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℤ)
184100nnzd 12074 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℤ)
185 dvdsval2 15598 . . . . . . . . . . . . 13 (((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑤)) ≠ 0 ∧ 𝑤 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤 ↔ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ))
186183, 120, 184, 185syl3anc 1363 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤 ↔ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ))
187182, 186mpbid 233 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ)
188100nnred 11641 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℝ)
189117nnred 11641 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℝ)
190100nngt0d 11674 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < 𝑤)
191117nngt0d 11674 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑃↑(𝑃 pCnt 𝑤)))
192188, 189, 190, 191divgt0d 11563 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))
193 elnnz 11979 . . . . . . . . . . 11 ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ ↔ ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ ∧ 0 < (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))))
194187, 192, 193sylanbrc 583 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ)
195 pcndvds2 16192 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ) → ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))
19622, 100, 195syl2anc 584 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))
197194, 196jca 512 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ ∧ ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))))
19822, 96, 142, 145, 154, 171, 180, 197pcaddlem 16212 . . . . . . . 8 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
199198expr 457 . . . . . . 7 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
200199rexlimdvva 3291 . . . . . 6 (((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
20121, 200syl5bir 244 . . . . 5 (((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
202201rexlimdvva 3291 . . . 4 ((𝜑𝐵 ≠ 0) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
20320, 202syl5bir 244 . . 3 ((𝜑𝐵 ≠ 0) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
20419, 203pm2.61dane 3101 . 2 (𝜑 → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
2053, 6, 204mp2and 695 1 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525   + caddc 10528   · cmul 10530  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  0cn0 11885  cz 11969  cuz 12231  cq 12336  cexp 13417  cdvds 15595  cprime 16003   pCnt cpc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-prm 16004  df-pc 16162
This theorem is referenced by:  pcadd2  16214  padicabv  26133
  Copyright terms: Public domain W3C validator