Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwnhl Structured version   Visualization version   GIF version

Theorem mirbtwnhl 26458
 Description: If the center of the point inversion 𝐴 is between two points 𝑋 and 𝑌, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirhl.m 𝑀 = (𝑆𝐴)
mirhl.k 𝐾 = (hlG‘𝐺)
mirhl.a (𝜑𝐴𝑃)
mirhl.x (𝜑𝑋𝑃)
mirhl.y (𝜑𝑌𝑃)
mirhl.z (𝜑𝑍𝑃)
mirbtwnhl.1 (𝜑𝑋𝐴)
mirbtwnhl.2 (𝜑𝑌𝐴)
mirbtwnhl.3 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
mirbtwnhl (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))

Proof of Theorem mirbtwnhl
StepHypRef Expression
1 simpr 487 . . . 4 ((𝜑𝑍 = 𝐴) → 𝑍 = 𝐴)
2 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
3 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 mirhl.k . . . . . 6 𝐾 = (hlG‘𝐺)
5 mirhl.a . . . . . 6 (𝜑𝐴𝑃)
6 mirhl.x . . . . . 6 (𝜑𝑋𝑃)
7 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
82, 3, 4, 5, 6, 5, 7hleqnid 26386 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑋)
98adantr 483 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑋)
101, 9eqnbrtrd 5075 . . 3 ((𝜑𝑍 = 𝐴) → ¬ 𝑍(𝐾𝐴)𝑋)
111fveq2d 6667 . . . . 5 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
12 mirval.d . . . . . . 7 = (dist‘𝐺)
13 mirval.l . . . . . . 7 𝐿 = (LineG‘𝐺)
14 mirval.s . . . . . . 7 𝑆 = (pInvG‘𝐺)
15 mirhl.m . . . . . . 7 𝑀 = (𝑆𝐴)
162, 12, 3, 13, 14, 7, 5, 15mircinv 26446 . . . . . 6 (𝜑 → (𝑀𝐴) = 𝐴)
1716adantr 483 . . . . 5 ((𝜑𝑍 = 𝐴) → (𝑀𝐴) = 𝐴)
1811, 17eqtrd 2854 . . . 4 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = 𝐴)
19 mirhl.y . . . . . 6 (𝜑𝑌𝑃)
202, 3, 4, 5, 19, 5, 7hleqnid 26386 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑌)
2120adantr 483 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑌)
2218, 21eqnbrtrd 5075 . . 3 ((𝜑𝑍 = 𝐴) → ¬ (𝑀𝑍)(𝐾𝐴)𝑌)
2310, 222falsed 379 . 2 ((𝜑𝑍 = 𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
24 simplr 767 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝐴)
2524neneqd 3019 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ 𝑍 = 𝐴)
267ad3antrrr 728 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐺 ∈ TarskiG)
275ad3antrrr 728 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐴𝑃)
28 mirhl.z . . . . . . . 8 (𝜑𝑍𝑃)
2928ad3antrrr 728 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍𝑃)
30 simpr 487 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = 𝐴)
3116ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝐴) = 𝐴)
3230, 31eqtr4d 2857 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
332, 12, 3, 13, 14, 26, 27, 15, 29, 27, 32mireq 26443 . . . . . 6 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍 = 𝐴)
3425, 33mtand 814 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ (𝑀𝑍) = 𝐴)
3534neqned 3021 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ≠ 𝐴)
36 mirbtwnhl.2 . . . . 5 (𝜑𝑌𝐴)
3736ad2antrr 724 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝐴)
387ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐺 ∈ TarskiG)
396ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝑃)
405ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴𝑃)
412, 12, 3, 13, 14, 7, 5, 15, 28mircl 26439 . . . . . 6 (𝜑 → (𝑀𝑍) ∈ 𝑃)
4241ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ∈ 𝑃)
4319ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝑃)
44 mirbtwnhl.1 . . . . . 6 (𝜑𝑋𝐴)
4544ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝐴)
4628ad2antrr 724 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝑃)
472, 3, 4, 28, 6, 5, 7ishlg 26380 . . . . . . . . . 10 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
4847adantr 483 . . . . . . . . 9 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
4948biimpa 479 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))
5049simp3d 1138 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
5150orcomd 867 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑋 ∈ (𝐴𝐼𝑍) ∨ 𝑍 ∈ (𝐴𝐼𝑋)))
522, 12, 3, 13, 14, 38, 15, 40, 39, 46, 51mirconn 26456 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼(𝑀𝑍)))
53 mirbtwnhl.3 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
5453ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼𝑌))
552, 3, 38, 39, 40, 42, 43, 45, 52, 54tgbtwnconn2 26354 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
562, 3, 4, 41, 19, 5, 7ishlg 26380 . . . . . 6 (𝜑 → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
5756adantr 483 . . . . 5 ((𝜑𝑍𝐴) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
5857adantr 483 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
5935, 37, 55, 58mpbir3and 1336 . . 3 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍)(𝐾𝐴)𝑌)
60 simplr 767 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝐴)
6144ad2antrr 724 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝐴)
627ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐺 ∈ TarskiG)
6319ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝑃)
645ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴𝑃)
6528ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝑃)
666ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝑃)
6736ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝐴)
6816ad2antrr 724 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) = 𝐴)
6941ad2antrr 724 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑍) ∈ 𝑃)
702, 12, 3, 13, 14, 62, 64, 15, 63mircl 26439 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑌) ∈ 𝑃)
7157biimpa 479 . . . . . . . . . 10 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍)))))
7271simp3d 1138 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
732, 12, 3, 13, 14, 62, 15, 64, 69, 63, 72mirconn 26456 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑍)𝐼(𝑀𝑌)))
742, 12, 3, 62, 69, 64, 70, 73tgbtwncom 26266 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
7568, 74eqeltrd 2911 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
762, 12, 3, 13, 14, 62, 64, 15, 63, 64, 65mirbtwnb 26450 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝐴 ∈ (𝑌𝐼𝑍) ↔ (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍))))
7775, 76mpbird 259 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑍))
782, 12, 3, 7, 6, 5, 19, 53tgbtwncom 26266 . . . . . 6 (𝜑𝐴 ∈ (𝑌𝐼𝑋))
7978ad2antrr 724 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑋))
802, 3, 62, 63, 64, 65, 66, 67, 77, 79tgbtwnconn2 26354 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
8148adantr 483 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
8260, 61, 80, 81mpbir3and 1336 . . 3 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍(𝐾𝐴)𝑋)
8359, 82impbida 799 . 2 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
8423, 83pm2.61dane 3102 1 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∨ wo 843   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014   class class class wbr 5057  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  distcds 16566  TarskiGcstrkg 26208  Itvcitv 26214  LineGclng 26215  hlGchlg 26378  pInvGcmir 26430 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-s3 14203  df-trkgc 26226  df-trkgb 26227  df-trkgcb 26228  df-trkg 26231  df-cgrg 26289  df-hlg 26379  df-mir 26431 This theorem is referenced by:  opphllem6  26530
 Copyright terms: Public domain W3C validator