MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwnhl Structured version   Visualization version   GIF version

Theorem mirbtwnhl 25999
Description: If the center of the point inversion 𝐴 is between two points 𝑋 and 𝑌, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirhl.m 𝑀 = (𝑆𝐴)
mirhl.k 𝐾 = (hlG‘𝐺)
mirhl.a (𝜑𝐴𝑃)
mirhl.x (𝜑𝑋𝑃)
mirhl.y (𝜑𝑌𝑃)
mirhl.z (𝜑𝑍𝑃)
mirbtwnhl.1 (𝜑𝑋𝐴)
mirbtwnhl.2 (𝜑𝑌𝐴)
mirbtwnhl.3 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
mirbtwnhl (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))

Proof of Theorem mirbtwnhl
StepHypRef Expression
1 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
2 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 mirhl.k . . . . . 6 𝐾 = (hlG‘𝐺)
4 mirhl.a . . . . . 6 (𝜑𝐴𝑃)
5 mirhl.x . . . . . 6 (𝜑𝑋𝑃)
6 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
71, 2, 3, 4, 5, 4, 6hleqnid 25927 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑋)
87adantr 474 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑋)
9 simpr 479 . . . . 5 ((𝜑𝑍 = 𝐴) → 𝑍 = 𝐴)
109breq1d 4885 . . . 4 ((𝜑𝑍 = 𝐴) → (𝑍(𝐾𝐴)𝑋𝐴(𝐾𝐴)𝑋))
118, 10mtbird 317 . . 3 ((𝜑𝑍 = 𝐴) → ¬ 𝑍(𝐾𝐴)𝑋)
12 mirhl.y . . . . . 6 (𝜑𝑌𝑃)
131, 2, 3, 4, 12, 4, 6hleqnid 25927 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑌)
1413adantr 474 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑌)
159fveq2d 6441 . . . . . 6 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
16 mirval.d . . . . . . . 8 = (dist‘𝐺)
17 mirval.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
18 mirval.s . . . . . . . 8 𝑆 = (pInvG‘𝐺)
19 mirhl.m . . . . . . . 8 𝑀 = (𝑆𝐴)
201, 16, 2, 17, 18, 6, 4, 19mircinv 25987 . . . . . . 7 (𝜑 → (𝑀𝐴) = 𝐴)
2120adantr 474 . . . . . 6 ((𝜑𝑍 = 𝐴) → (𝑀𝐴) = 𝐴)
2215, 21eqtrd 2861 . . . . 5 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = 𝐴)
2322breq1d 4885 . . . 4 ((𝜑𝑍 = 𝐴) → ((𝑀𝑍)(𝐾𝐴)𝑌𝐴(𝐾𝐴)𝑌))
2414, 23mtbird 317 . . 3 ((𝜑𝑍 = 𝐴) → ¬ (𝑀𝑍)(𝐾𝐴)𝑌)
2511, 242falsed 368 . 2 ((𝜑𝑍 = 𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
26 simplr 785 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝐴)
2726neneqd 3004 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ 𝑍 = 𝐴)
286ad3antrrr 721 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐺 ∈ TarskiG)
294ad3antrrr 721 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐴𝑃)
30 mirhl.z . . . . . . . . 9 (𝜑𝑍𝑃)
3130ad3antrrr 721 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍𝑃)
32 simpr 479 . . . . . . . . 9 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = 𝐴)
3320ad3antrrr 721 . . . . . . . . 9 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝐴) = 𝐴)
3432, 33eqtr4d 2864 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
351, 16, 2, 17, 18, 28, 29, 19, 31, 29, 34mireq 25984 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍 = 𝐴)
3627, 35mtand 850 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ (𝑀𝑍) = 𝐴)
3736neqned 3006 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ≠ 𝐴)
38 mirbtwnhl.2 . . . . . 6 (𝜑𝑌𝐴)
3938ad2antrr 717 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝐴)
406ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐺 ∈ TarskiG)
415ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝑃)
424ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴𝑃)
431, 16, 2, 17, 18, 6, 4, 19, 30mircl 25980 . . . . . . 7 (𝜑 → (𝑀𝑍) ∈ 𝑃)
4443ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ∈ 𝑃)
4512ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝑃)
46 mirbtwnhl.1 . . . . . . 7 (𝜑𝑋𝐴)
4746ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝐴)
4830ad2antrr 717 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝑃)
491, 2, 3, 30, 5, 4, 6ishlg 25921 . . . . . . . . . . 11 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
5049adantr 474 . . . . . . . . . 10 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
5150biimpa 470 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))
5251simp3d 1178 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
5352orcomd 902 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑋 ∈ (𝐴𝐼𝑍) ∨ 𝑍 ∈ (𝐴𝐼𝑋)))
541, 16, 2, 17, 18, 40, 19, 42, 41, 48, 53mirconn 25997 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼(𝑀𝑍)))
55 mirbtwnhl.3 . . . . . . 7 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
5655ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼𝑌))
571, 2, 40, 41, 42, 44, 45, 47, 54, 56tgbtwnconn2 25895 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
5837, 39, 573jca 1162 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍)))))
591, 2, 3, 43, 12, 4, 6ishlg 25921 . . . . . 6 (𝜑 → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
6059adantr 474 . . . . 5 ((𝜑𝑍𝐴) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
6160adantr 474 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
6258, 61mpbird 249 . . 3 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍)(𝐾𝐴)𝑌)
63 simplr 785 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝐴)
6446ad2antrr 717 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝐴)
656ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐺 ∈ TarskiG)
6612ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝑃)
674ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴𝑃)
6830ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝑃)
695ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝑃)
7038ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝐴)
7120ad2antrr 717 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) = 𝐴)
7243ad2antrr 717 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑍) ∈ 𝑃)
731, 16, 2, 17, 18, 65, 67, 19, 66mircl 25980 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑌) ∈ 𝑃)
7460biimpa 470 . . . . . . . . . . 11 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍)))))
7574simp3d 1178 . . . . . . . . . 10 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
761, 16, 2, 17, 18, 65, 19, 67, 72, 66, 75mirconn 25997 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑍)𝐼(𝑀𝑌)))
771, 16, 2, 65, 72, 67, 73, 76tgbtwncom 25807 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
7871, 77eqeltrd 2906 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
791, 16, 2, 17, 18, 65, 67, 19, 66, 67, 68mirbtwnb 25991 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝐴 ∈ (𝑌𝐼𝑍) ↔ (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍))))
8078, 79mpbird 249 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑍))
811, 16, 2, 6, 5, 4, 12, 55tgbtwncom 25807 . . . . . . 7 (𝜑𝐴 ∈ (𝑌𝐼𝑋))
8281ad2antrr 717 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑋))
831, 2, 65, 66, 67, 68, 69, 70, 80, 82tgbtwnconn2 25895 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
8463, 64, 833jca 1162 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))
8550adantr 474 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
8684, 85mpbird 249 . . 3 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍(𝐾𝐴)𝑋)
8762, 86impbida 835 . 2 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
8825, 87pm2.61dane 3086 1 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4875  cfv 6127  (class class class)co 6910  Basecbs 16229  distcds 16321  TarskiGcstrkg 25749  Itvcitv 25755  LineGclng 25756  hlGchlg 25919  pInvGcmir 25971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-hash 13418  df-word 13582  df-concat 13638  df-s1 13663  df-s2 13976  df-s3 13977  df-trkgc 25767  df-trkgb 25768  df-trkgcb 25769  df-trkg 25772  df-cgrg 25830  df-hlg 25920  df-mir 25972
This theorem is referenced by:  opphllem6  26068
  Copyright terms: Public domain W3C validator