Proof of Theorem mirbtwnhl
Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → 𝑍 = 𝐴) |
2 | | mirval.p |
. . . . . 6
⊢ 𝑃 = (Base‘𝐺) |
3 | | mirval.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
4 | | mirhl.k |
. . . . . 6
⊢ 𝐾 = (hlG‘𝐺) |
5 | | mirhl.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
6 | | mirhl.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
7 | | mirval.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
8 | 2, 3, 4, 5, 6, 5, 7 | hleqnid 26965 |
. . . . 5
⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝑋) |
9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → ¬ 𝐴(𝐾‘𝐴)𝑋) |
10 | 1, 9 | eqnbrtrd 5097 |
. . 3
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → ¬ 𝑍(𝐾‘𝐴)𝑋) |
11 | 1 | fveq2d 6773 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → (𝑀‘𝑍) = (𝑀‘𝐴)) |
12 | | mirval.d |
. . . . . . 7
⊢ − =
(dist‘𝐺) |
13 | | mirval.l |
. . . . . . 7
⊢ 𝐿 = (LineG‘𝐺) |
14 | | mirval.s |
. . . . . . 7
⊢ 𝑆 = (pInvG‘𝐺) |
15 | | mirhl.m |
. . . . . . 7
⊢ 𝑀 = (𝑆‘𝐴) |
16 | 2, 12, 3, 13, 14, 7, 5, 15 | mircinv 27025 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐴) = 𝐴) |
17 | 16 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → (𝑀‘𝐴) = 𝐴) |
18 | 11, 17 | eqtrd 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → (𝑀‘𝑍) = 𝐴) |
19 | | mirhl.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
20 | 2, 3, 4, 5, 19, 5,
7 | hleqnid 26965 |
. . . . 5
⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝑌) |
21 | 20 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → ¬ 𝐴(𝐾‘𝐴)𝑌) |
22 | 18, 21 | eqnbrtrd 5097 |
. . 3
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → ¬ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) |
23 | 10, 22 | 2falsed 377 |
. 2
⊢ ((𝜑 ∧ 𝑍 = 𝐴) → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑀‘𝑍)(𝐾‘𝐴)𝑌)) |
24 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝑍 ≠ 𝐴) |
25 | 24 | neneqd 2950 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → ¬ 𝑍 = 𝐴) |
26 | 7 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) ∧ (𝑀‘𝑍) = 𝐴) → 𝐺 ∈ TarskiG) |
27 | 5 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) ∧ (𝑀‘𝑍) = 𝐴) → 𝐴 ∈ 𝑃) |
28 | | mirhl.z |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
29 | 28 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) ∧ (𝑀‘𝑍) = 𝐴) → 𝑍 ∈ 𝑃) |
30 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) ∧ (𝑀‘𝑍) = 𝐴) → (𝑀‘𝑍) = 𝐴) |
31 | 16 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) ∧ (𝑀‘𝑍) = 𝐴) → (𝑀‘𝐴) = 𝐴) |
32 | 30, 31 | eqtr4d 2783 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) ∧ (𝑀‘𝑍) = 𝐴) → (𝑀‘𝑍) = (𝑀‘𝐴)) |
33 | 2, 12, 3, 13, 14, 26, 27, 15, 29, 27, 32 | mireq 27022 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) ∧ (𝑀‘𝑍) = 𝐴) → 𝑍 = 𝐴) |
34 | 25, 33 | mtand 813 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → ¬ (𝑀‘𝑍) = 𝐴) |
35 | 34 | neqned 2952 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → (𝑀‘𝑍) ≠ 𝐴) |
36 | | mirbtwnhl.2 |
. . . . 5
⊢ (𝜑 → 𝑌 ≠ 𝐴) |
37 | 36 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝑌 ≠ 𝐴) |
38 | 7 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝐺 ∈ TarskiG) |
39 | 6 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝑋 ∈ 𝑃) |
40 | 5 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝐴 ∈ 𝑃) |
41 | 2, 12, 3, 13, 14, 7, 5, 15, 28 | mircl 27018 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝑍) ∈ 𝑃) |
42 | 41 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → (𝑀‘𝑍) ∈ 𝑃) |
43 | 19 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝑌 ∈ 𝑃) |
44 | | mirbtwnhl.1 |
. . . . . 6
⊢ (𝜑 → 𝑋 ≠ 𝐴) |
45 | 44 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝑋 ≠ 𝐴) |
46 | 28 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝑍 ∈ 𝑃) |
47 | 2, 3, 4, 28, 6, 5,
7 | ishlg 26959 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑍 ≠ 𝐴 ∧ 𝑋 ≠ 𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))) |
48 | 47 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ≠ 𝐴) → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑍 ≠ 𝐴 ∧ 𝑋 ≠ 𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))) |
49 | 48 | biimpa 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → (𝑍 ≠ 𝐴 ∧ 𝑋 ≠ 𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))) |
50 | 49 | simp3d 1143 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))) |
51 | 50 | orcomd 868 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → (𝑋 ∈ (𝐴𝐼𝑍) ∨ 𝑍 ∈ (𝐴𝐼𝑋))) |
52 | 2, 12, 3, 13, 14, 38, 15, 40, 39, 46, 51 | mirconn 27035 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼(𝑀‘𝑍))) |
53 | | mirbtwnhl.3 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼𝑌)) |
54 | 53 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼𝑌)) |
55 | 2, 3, 38, 39, 40, 42, 43, 45, 52, 54 | tgbtwnconn2 26933 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → ((𝑀‘𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀‘𝑍)))) |
56 | 2, 3, 4, 41, 19, 5, 7 | ishlg 26959 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑍)(𝐾‘𝐴)𝑌 ↔ ((𝑀‘𝑍) ≠ 𝐴 ∧ 𝑌 ≠ 𝐴 ∧ ((𝑀‘𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀‘𝑍)))))) |
57 | 56 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍 ≠ 𝐴) → ((𝑀‘𝑍)(𝐾‘𝐴)𝑌 ↔ ((𝑀‘𝑍) ≠ 𝐴 ∧ 𝑌 ≠ 𝐴 ∧ ((𝑀‘𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀‘𝑍)))))) |
58 | 57 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → ((𝑀‘𝑍)(𝐾‘𝐴)𝑌 ↔ ((𝑀‘𝑍) ≠ 𝐴 ∧ 𝑌 ≠ 𝐴 ∧ ((𝑀‘𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀‘𝑍)))))) |
59 | 35, 37, 55, 58 | mpbir3and 1341 |
. . 3
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ 𝑍(𝐾‘𝐴)𝑋) → (𝑀‘𝑍)(𝐾‘𝐴)𝑌) |
60 | | simplr 766 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝑍 ≠ 𝐴) |
61 | 44 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝑋 ≠ 𝐴) |
62 | 7 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝐺 ∈ TarskiG) |
63 | 19 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝑌 ∈ 𝑃) |
64 | 5 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝐴 ∈ 𝑃) |
65 | 28 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝑍 ∈ 𝑃) |
66 | 6 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝑋 ∈ 𝑃) |
67 | 36 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝑌 ≠ 𝐴) |
68 | 16 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → (𝑀‘𝐴) = 𝐴) |
69 | 41 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → (𝑀‘𝑍) ∈ 𝑃) |
70 | 2, 12, 3, 13, 14, 62, 64, 15, 63 | mircl 27018 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → (𝑀‘𝑌) ∈ 𝑃) |
71 | 57 | biimpa 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → ((𝑀‘𝑍) ≠ 𝐴 ∧ 𝑌 ≠ 𝐴 ∧ ((𝑀‘𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀‘𝑍))))) |
72 | 71 | simp3d 1143 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → ((𝑀‘𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀‘𝑍)))) |
73 | 2, 12, 3, 13, 14, 62, 15, 64, 69, 63, 72 | mirconn 27035 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝐴 ∈ ((𝑀‘𝑍)𝐼(𝑀‘𝑌))) |
74 | 2, 12, 3, 62, 69, 64, 70, 73 | tgbtwncom 26845 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝐴 ∈ ((𝑀‘𝑌)𝐼(𝑀‘𝑍))) |
75 | 68, 74 | eqeltrd 2841 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → (𝑀‘𝐴) ∈ ((𝑀‘𝑌)𝐼(𝑀‘𝑍))) |
76 | 2, 12, 3, 13, 14, 62, 64, 15, 63, 64, 65 | mirbtwnb 27029 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → (𝐴 ∈ (𝑌𝐼𝑍) ↔ (𝑀‘𝐴) ∈ ((𝑀‘𝑌)𝐼(𝑀‘𝑍)))) |
77 | 75, 76 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑍)) |
78 | 2, 12, 3, 7, 6, 5, 19, 53 | tgbtwncom 26845 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝑌𝐼𝑋)) |
79 | 78 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑋)) |
80 | 2, 3, 62, 63, 64, 65, 66, 67, 77, 79 | tgbtwnconn2 26933 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))) |
81 | 48 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑍 ≠ 𝐴 ∧ 𝑋 ≠ 𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))) |
82 | 60, 61, 80, 81 | mpbir3and 1341 |
. . 3
⊢ (((𝜑 ∧ 𝑍 ≠ 𝐴) ∧ (𝑀‘𝑍)(𝐾‘𝐴)𝑌) → 𝑍(𝐾‘𝐴)𝑋) |
83 | 59, 82 | impbida 798 |
. 2
⊢ ((𝜑 ∧ 𝑍 ≠ 𝐴) → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑀‘𝑍)(𝐾‘𝐴)𝑌)) |
84 | 23, 83 | pm2.61dane 3034 |
1
⊢ (𝜑 → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑀‘𝑍)(𝐾‘𝐴)𝑌)) |