MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwnhl Structured version   Visualization version   GIF version

Theorem mirbtwnhl 28659
Description: If the center of the point inversion 𝐴 is between two points 𝑋 and 𝑌, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirhl.m 𝑀 = (𝑆𝐴)
mirhl.k 𝐾 = (hlG‘𝐺)
mirhl.a (𝜑𝐴𝑃)
mirhl.x (𝜑𝑋𝑃)
mirhl.y (𝜑𝑌𝑃)
mirhl.z (𝜑𝑍𝑃)
mirbtwnhl.1 (𝜑𝑋𝐴)
mirbtwnhl.2 (𝜑𝑌𝐴)
mirbtwnhl.3 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
mirbtwnhl (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))

Proof of Theorem mirbtwnhl
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑍 = 𝐴) → 𝑍 = 𝐴)
2 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
3 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 mirhl.k . . . . . 6 𝐾 = (hlG‘𝐺)
5 mirhl.a . . . . . 6 (𝜑𝐴𝑃)
6 mirhl.x . . . . . 6 (𝜑𝑋𝑃)
7 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
82, 3, 4, 5, 6, 5, 7hleqnid 28587 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑋)
98adantr 480 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑋)
101, 9eqnbrtrd 5137 . . 3 ((𝜑𝑍 = 𝐴) → ¬ 𝑍(𝐾𝐴)𝑋)
111fveq2d 6880 . . . . 5 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
12 mirval.d . . . . . . 7 = (dist‘𝐺)
13 mirval.l . . . . . . 7 𝐿 = (LineG‘𝐺)
14 mirval.s . . . . . . 7 𝑆 = (pInvG‘𝐺)
15 mirhl.m . . . . . . 7 𝑀 = (𝑆𝐴)
162, 12, 3, 13, 14, 7, 5, 15mircinv 28647 . . . . . 6 (𝜑 → (𝑀𝐴) = 𝐴)
1716adantr 480 . . . . 5 ((𝜑𝑍 = 𝐴) → (𝑀𝐴) = 𝐴)
1811, 17eqtrd 2770 . . . 4 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = 𝐴)
19 mirhl.y . . . . . 6 (𝜑𝑌𝑃)
202, 3, 4, 5, 19, 5, 7hleqnid 28587 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑌)
2120adantr 480 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑌)
2218, 21eqnbrtrd 5137 . . 3 ((𝜑𝑍 = 𝐴) → ¬ (𝑀𝑍)(𝐾𝐴)𝑌)
2310, 222falsed 376 . 2 ((𝜑𝑍 = 𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
24 simplr 768 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝐴)
2524neneqd 2937 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ 𝑍 = 𝐴)
267ad3antrrr 730 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐺 ∈ TarskiG)
275ad3antrrr 730 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐴𝑃)
28 mirhl.z . . . . . . . 8 (𝜑𝑍𝑃)
2928ad3antrrr 730 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍𝑃)
30 simpr 484 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = 𝐴)
3116ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝐴) = 𝐴)
3230, 31eqtr4d 2773 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
332, 12, 3, 13, 14, 26, 27, 15, 29, 27, 32mireq 28644 . . . . . 6 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍 = 𝐴)
3425, 33mtand 815 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ (𝑀𝑍) = 𝐴)
3534neqned 2939 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ≠ 𝐴)
36 mirbtwnhl.2 . . . . 5 (𝜑𝑌𝐴)
3736ad2antrr 726 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝐴)
387ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐺 ∈ TarskiG)
396ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝑃)
405ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴𝑃)
412, 12, 3, 13, 14, 7, 5, 15, 28mircl 28640 . . . . . 6 (𝜑 → (𝑀𝑍) ∈ 𝑃)
4241ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ∈ 𝑃)
4319ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝑃)
44 mirbtwnhl.1 . . . . . 6 (𝜑𝑋𝐴)
4544ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝐴)
4628ad2antrr 726 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝑃)
472, 3, 4, 28, 6, 5, 7ishlg 28581 . . . . . . . . . 10 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
4847adantr 480 . . . . . . . . 9 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
4948biimpa 476 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))
5049simp3d 1144 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
5150orcomd 871 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑋 ∈ (𝐴𝐼𝑍) ∨ 𝑍 ∈ (𝐴𝐼𝑋)))
522, 12, 3, 13, 14, 38, 15, 40, 39, 46, 51mirconn 28657 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼(𝑀𝑍)))
53 mirbtwnhl.3 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
5453ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼𝑌))
552, 3, 38, 39, 40, 42, 43, 45, 52, 54tgbtwnconn2 28555 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
562, 3, 4, 41, 19, 5, 7ishlg 28581 . . . . . 6 (𝜑 → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
5756adantr 480 . . . . 5 ((𝜑𝑍𝐴) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
5857adantr 480 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
5935, 37, 55, 58mpbir3and 1343 . . 3 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍)(𝐾𝐴)𝑌)
60 simplr 768 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝐴)
6144ad2antrr 726 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝐴)
627ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐺 ∈ TarskiG)
6319ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝑃)
645ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴𝑃)
6528ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝑃)
666ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝑃)
6736ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝐴)
6816ad2antrr 726 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) = 𝐴)
6941ad2antrr 726 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑍) ∈ 𝑃)
702, 12, 3, 13, 14, 62, 64, 15, 63mircl 28640 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑌) ∈ 𝑃)
7157biimpa 476 . . . . . . . . . 10 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍)))))
7271simp3d 1144 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
732, 12, 3, 13, 14, 62, 15, 64, 69, 63, 72mirconn 28657 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑍)𝐼(𝑀𝑌)))
742, 12, 3, 62, 69, 64, 70, 73tgbtwncom 28467 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
7568, 74eqeltrd 2834 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
762, 12, 3, 13, 14, 62, 64, 15, 63, 64, 65mirbtwnb 28651 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝐴 ∈ (𝑌𝐼𝑍) ↔ (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍))))
7775, 76mpbird 257 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑍))
782, 12, 3, 7, 6, 5, 19, 53tgbtwncom 28467 . . . . . 6 (𝜑𝐴 ∈ (𝑌𝐼𝑋))
7978ad2antrr 726 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑋))
802, 3, 62, 63, 64, 65, 66, 67, 77, 79tgbtwnconn2 28555 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
8148adantr 480 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
8260, 61, 80, 81mpbir3and 1343 . . 3 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍(𝐾𝐴)𝑋)
8359, 82impbida 800 . 2 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
8423, 83pm2.61dane 3019 1 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  hlGchlg 28579  pInvGcmir 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-hlg 28580  df-mir 28632
This theorem is referenced by:  opphllem6  28731
  Copyright terms: Public domain W3C validator