|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dgrub | Structured version Visualization version GIF version | ||
| Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) | 
| dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) | 
| Ref | Expression | 
|---|---|
| dgrub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℕ0) | |
| 2 | 1 | nn0red 12590 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℝ) | 
| 3 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆)) | |
| 4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 5 | dgrcl 26273 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 6 | 4, 5 | eqeltrid 2844 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) | 
| 7 | 3, 6 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℕ0) | 
| 8 | 7 | nn0red 12590 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℝ) | 
| 9 | dgrub.1 | . . . . . 6 ⊢ 𝐴 = (coeff‘𝐹) | |
| 10 | 9 | dgrval 26268 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) | 
| 11 | 4, 10 | eqtrid 2788 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) | 
| 12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) | 
| 13 | 9 | coef3 26272 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) | 
| 14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ) | 
| 15 | 14, 1 | ffvelcdmd 7104 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ ℂ) | 
| 16 | simp3 1138 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ≠ 0) | |
| 17 | eldifsn 4785 | . . . . . 6 ⊢ ((𝐴‘𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0)) | |
| 18 | 15, 16, 17 | sylanbrc 583 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ (ℂ ∖ {0})) | 
| 19 | 9 | coef 26270 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | 
| 20 | ffn 6735 | . . . . . 6 ⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0) | |
| 21 | elpreima 7077 | . . . . . 6 ⊢ (𝐴 Fn ℕ0 → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) | |
| 22 | 3, 19, 20, 21 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) | 
| 23 | 1, 18, 22 | mpbir2and 713 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0}))) | 
| 24 | nn0ssre 12532 | . . . . . . 7 ⊢ ℕ0 ⊆ ℝ | |
| 25 | ltso 11342 | . . . . . . 7 ⊢ < Or ℝ | |
| 26 | soss 5611 | . . . . . . 7 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 27 | 24, 25, 26 | mp2 9 | . . . . . 6 ⊢ < Or ℕ0 | 
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) | 
| 29 | 0zd 12627 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 30 | cnvimass 6099 | . . . . . . 7 ⊢ (◡𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴 | |
| 31 | 30, 19 | fssdm 6754 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0) | 
| 32 | 9 | dgrlem 26269 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) | 
| 33 | 32 | simprd 495 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) | 
| 34 | nn0uz 12921 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 35 | 34 | uzsupss 12983 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) | 
| 36 | 29, 31, 33, 35 | syl3anc 1372 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) | 
| 37 | 28, 36 | supub 9500 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)) | 
| 38 | 3, 23, 37 | sylc 65 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀) | 
| 39 | 12, 38 | eqnbrtrd 5160 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ 𝑁 < 𝑀) | 
| 40 | 2, 8, 39 | nltled 11412 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∖ cdif 3947 ∪ cun 3948 ⊆ wss 3950 {csn 4625 class class class wbr 5142 Or wor 5590 ◡ccnv 5683 “ cima 5687 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 supcsup 9481 ℂcc 11154 ℝcr 11155 0cc0 11156 < clt 11296 ≤ cle 11297 ℕ0cn0 12528 ℤcz 12615 Polycply 26224 coeffccoe 26226 degcdgr 26227 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 df-0p 25706 df-ply 26228 df-coe 26230 df-dgr 26231 | 
| This theorem is referenced by: dgrub2 26275 coeidlem 26277 coeid3 26280 dgreq 26284 coemullem 26290 coemulhi 26294 coemulc 26295 dgreq0 26306 dgrlt 26307 dgradd2 26309 dgrmul 26311 vieta1lem2 26354 aannenlem2 26372 | 
| Copyright terms: Public domain | W3C validator |