MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrub Structured version   Visualization version   GIF version

Theorem dgrub 26288
Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)

Proof of Theorem dgrub
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℕ0)
21nn0red 12586 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℝ)
3 simp1 1135 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆))
4 dgrub.2 . . . . 5 𝑁 = (deg‘𝐹)
5 dgrcl 26287 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
64, 5eqeltrid 2843 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
73, 6syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℕ0)
87nn0red 12586 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℝ)
9 dgrub.1 . . . . . 6 𝐴 = (coeff‘𝐹)
109dgrval 26282 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
114, 10eqtrid 2787 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
123, 11syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
139coef3 26286 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
143, 13syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ)
1514, 1ffvelcdmd 7105 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ ℂ)
16 simp3 1137 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ≠ 0)
17 eldifsn 4791 . . . . . 6 ((𝐴𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0))
1815, 16, 17sylanbrc 583 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ (ℂ ∖ {0}))
199coef 26284 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
20 ffn 6737 . . . . . 6 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
21 elpreima 7078 . . . . . 6 (𝐴 Fn ℕ0 → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
223, 19, 20, 214syl 19 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
231, 18, 22mpbir2and 713 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ (𝐴 “ (ℂ ∖ {0})))
24 nn0ssre 12528 . . . . . . 7 0 ⊆ ℝ
25 ltso 11339 . . . . . . 7 < Or ℝ
26 soss 5617 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
2724, 25, 26mp2 9 . . . . . 6 < Or ℕ0
2827a1i 11 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0)
29 0zd 12623 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
30 cnvimass 6102 . . . . . . 7 (𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴
3130, 19fssdm 6756 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0)
329dgrlem 26283 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
3332simprd 495 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
34 nn0uz 12918 . . . . . . 7 0 = (ℤ‘0)
3534uzsupss 12980 . . . . . 6 ((0 ∈ ℤ ∧ (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
3629, 31, 33, 35syl3anc 1370 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
3728, 36supub 9497 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀))
383, 23, 37sylc 65 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)
3912, 38eqnbrtrd 5166 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ 𝑁 < 𝑀)
402, 8, 39nltled 11409 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cdif 3960  cun 3961  wss 3963  {csn 4631   class class class wbr 5148   Or wor 5596  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  supcsup 9478  cc 11151  cr 11152  0cc0 11153   < clt 11293  cle 11294  0cn0 12524  cz 12611  Polycply 26238  coeffccoe 26240  degcdgr 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-0p 25719  df-ply 26242  df-coe 26244  df-dgr 26245
This theorem is referenced by:  dgrub2  26289  coeidlem  26291  coeid3  26294  dgreq  26298  coemullem  26304  coemulhi  26308  coemulc  26309  dgreq0  26320  dgrlt  26321  dgradd2  26323  dgrmul  26325  vieta1lem2  26368  aannenlem2  26386
  Copyright terms: Public domain W3C validator