MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrub Structured version   Visualization version   GIF version

Theorem dgrub 24427
Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)

Proof of Theorem dgrub
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1127 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆))
2 simp2 1128 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℕ0)
3 dgrub.1 . . . . . . . . 9 𝐴 = (coeff‘𝐹)
43coef3 24425 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
51, 4syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ)
65, 2ffvelrnd 6624 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ ℂ)
7 simp3 1129 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ≠ 0)
8 eldifsn 4550 . . . . . 6 ((𝐴𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0))
96, 7, 8sylanbrc 578 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ (ℂ ∖ {0}))
103coef 24423 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
11 ffn 6291 . . . . . 6 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
12 elpreima 6600 . . . . . 6 (𝐴 Fn ℕ0 → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
131, 10, 11, 124syl 19 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
142, 9, 13mpbir2and 703 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ (𝐴 “ (ℂ ∖ {0})))
15 nn0ssre 11646 . . . . . . 7 0 ⊆ ℝ
16 ltso 10457 . . . . . . 7 < Or ℝ
17 soss 5293 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1815, 16, 17mp2 9 . . . . . 6 < Or ℕ0
1918a1i 11 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0)
20 0zd 11740 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
21 cnvimass 5739 . . . . . . 7 (𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴
2221, 10fssdm 6307 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0)
233dgrlem 24422 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
2423simprd 491 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
25 nn0uz 12028 . . . . . . 7 0 = (ℤ‘0)
2625uzsupss 12087 . . . . . 6 ((0 ∈ ℤ ∧ (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
2720, 22, 24, 26syl3anc 1439 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
2819, 27supub 8653 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀))
291, 14, 28sylc 65 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)
30 dgrub.2 . . . . . 6 𝑁 = (deg‘𝐹)
313dgrval 24421 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
3230, 31syl5eq 2826 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
331, 32syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
3433breq1d 4896 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝑁 < 𝑀 ↔ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀))
3529, 34mtbird 317 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ 𝑁 < 𝑀)
362nn0red 11703 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℝ)
37 dgrcl 24426 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3830, 37syl5eqel 2863 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
391, 38syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℕ0)
4039nn0red 11703 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℝ)
4136, 40lenltd 10522 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
4235, 41mpbird 249 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  cdif 3789  cun 3790  wss 3792  {csn 4398   class class class wbr 4886   Or wor 5273  ccnv 5354  cima 5358   Fn wfn 6130  wf 6131  cfv 6135  supcsup 8634  cc 10270  cr 10271  0cc0 10272   < clt 10411  cle 10412  0cn0 11642  cz 11728  Polycply 24377  coeffccoe 24379  degcdgr 24380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-0p 23874  df-ply 24381  df-coe 24383  df-dgr 24384
This theorem is referenced by:  dgrub2  24428  coeidlem  24430  coeid3  24433  dgreq  24437  coemullem  24443  coemulhi  24447  coemulc  24448  dgreq0  24458  dgrlt  24459  dgradd2  24461  dgrmul  24463  vieta1lem2  24503  aannenlem2  24521
  Copyright terms: Public domain W3C validator