![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrub | Structured version Visualization version GIF version |
Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
Ref | Expression |
---|---|
dgrub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1127 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆)) | |
2 | simp2 1128 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℕ0) | |
3 | dgrub.1 | . . . . . . . . 9 ⊢ 𝐴 = (coeff‘𝐹) | |
4 | 3 | coef3 24425 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ) |
6 | 5, 2 | ffvelrnd 6624 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ ℂ) |
7 | simp3 1129 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ≠ 0) | |
8 | eldifsn 4550 | . . . . . 6 ⊢ ((𝐴‘𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0)) | |
9 | 6, 7, 8 | sylanbrc 578 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ (ℂ ∖ {0})) |
10 | 3 | coef 24423 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
11 | ffn 6291 | . . . . . 6 ⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0) | |
12 | elpreima 6600 | . . . . . 6 ⊢ (𝐴 Fn ℕ0 → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) | |
13 | 1, 10, 11, 12 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) |
14 | 2, 9, 13 | mpbir2and 703 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0}))) |
15 | nn0ssre 11646 | . . . . . . 7 ⊢ ℕ0 ⊆ ℝ | |
16 | ltso 10457 | . . . . . . 7 ⊢ < Or ℝ | |
17 | soss 5293 | . . . . . . 7 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
18 | 15, 16, 17 | mp2 9 | . . . . . 6 ⊢ < Or ℕ0 |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
20 | 0zd 11740 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
21 | cnvimass 5739 | . . . . . . 7 ⊢ (◡𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴 | |
22 | 21, 10 | fssdm 6307 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0) |
23 | 3 | dgrlem 24422 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
24 | 23 | simprd 491 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
25 | nn0uz 12028 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
26 | 25 | uzsupss 12087 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
27 | 20, 22, 24, 26 | syl3anc 1439 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
28 | 19, 27 | supub 8653 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)) |
29 | 1, 14, 28 | sylc 65 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀) |
30 | dgrub.2 | . . . . . 6 ⊢ 𝑁 = (deg‘𝐹) | |
31 | 3 | dgrval 24421 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
32 | 30, 31 | syl5eq 2826 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
33 | 1, 32 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
34 | 33 | breq1d 4896 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝑁 < 𝑀 ↔ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)) |
35 | 29, 34 | mtbird 317 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ 𝑁 < 𝑀) |
36 | 2 | nn0red 11703 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℝ) |
37 | dgrcl 24426 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
38 | 30, 37 | syl5eqel 2863 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) |
39 | 1, 38 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℕ0) |
40 | 39 | nn0red 11703 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℝ) |
41 | 36, 40 | lenltd 10522 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
42 | 35, 41 | mpbird 249 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ∃wrex 3091 ∖ cdif 3789 ∪ cun 3790 ⊆ wss 3792 {csn 4398 class class class wbr 4886 Or wor 5273 ◡ccnv 5354 “ cima 5358 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 supcsup 8634 ℂcc 10270 ℝcr 10271 0cc0 10272 < clt 10411 ≤ cle 10412 ℕ0cn0 11642 ℤcz 11728 Polycply 24377 coeffccoe 24379 degcdgr 24380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-fl 12912 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-rlim 14628 df-sum 14825 df-0p 23874 df-ply 24381 df-coe 24383 df-dgr 24384 |
This theorem is referenced by: dgrub2 24428 coeidlem 24430 coeid3 24433 dgreq 24437 coemullem 24443 coemulhi 24447 coemulc 24448 dgreq0 24458 dgrlt 24459 dgradd2 24461 dgrmul 24463 vieta1lem2 24503 aannenlem2 24521 |
Copyright terms: Public domain | W3C validator |