MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrub Structured version   Visualization version   GIF version

Theorem dgrub 26155
Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)

Proof of Theorem dgrub
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℕ0)
21nn0red 12464 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℝ)
3 simp1 1136 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆))
4 dgrub.2 . . . . 5 𝑁 = (deg‘𝐹)
5 dgrcl 26154 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
64, 5eqeltrid 2832 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
73, 6syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℕ0)
87nn0red 12464 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℝ)
9 dgrub.1 . . . . . 6 𝐴 = (coeff‘𝐹)
109dgrval 26149 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
114, 10eqtrid 2776 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
123, 11syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
139coef3 26153 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
143, 13syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ)
1514, 1ffvelcdmd 7023 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ ℂ)
16 simp3 1138 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ≠ 0)
17 eldifsn 4740 . . . . . 6 ((𝐴𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0))
1815, 16, 17sylanbrc 583 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ (ℂ ∖ {0}))
199coef 26151 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
20 ffn 6656 . . . . . 6 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
21 elpreima 6996 . . . . . 6 (𝐴 Fn ℕ0 → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
223, 19, 20, 214syl 19 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
231, 18, 22mpbir2and 713 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ (𝐴 “ (ℂ ∖ {0})))
24 nn0ssre 12406 . . . . . . 7 0 ⊆ ℝ
25 ltso 11214 . . . . . . 7 < Or ℝ
26 soss 5551 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
2724, 25, 26mp2 9 . . . . . 6 < Or ℕ0
2827a1i 11 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0)
29 0zd 12501 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
30 cnvimass 6037 . . . . . . 7 (𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴
3130, 19fssdm 6675 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0)
329dgrlem 26150 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
3332simprd 495 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
34 nn0uz 12795 . . . . . . 7 0 = (ℤ‘0)
3534uzsupss 12859 . . . . . 6 ((0 ∈ ℤ ∧ (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
3629, 31, 33, 35syl3anc 1373 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
3728, 36supub 9368 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀))
383, 23, 37sylc 65 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)
3912, 38eqnbrtrd 5113 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ 𝑁 < 𝑀)
402, 8, 39nltled 11284 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  cun 3903  wss 3905  {csn 4579   class class class wbr 5095   Or wor 5530  ccnv 5622  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  supcsup 9349  cc 11026  cr 11027  0cc0 11028   < clt 11168  cle 11169  0cn0 12402  cz 12489  Polycply 26105  coeffccoe 26107  degcdgr 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111  df-dgr 26112
This theorem is referenced by:  dgrub2  26156  coeidlem  26158  coeid3  26161  dgreq  26165  coemullem  26171  coemulhi  26175  coemulc  26176  dgreq0  26187  dgrlt  26188  dgradd2  26190  dgrmul  26192  vieta1lem2  26235  aannenlem2  26253
  Copyright terms: Public domain W3C validator