MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrub Structured version   Visualization version   GIF version

Theorem dgrub 26274
Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)

Proof of Theorem dgrub
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℕ0)
21nn0red 12590 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ ℝ)
3 simp1 1136 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆))
4 dgrub.2 . . . . 5 𝑁 = (deg‘𝐹)
5 dgrcl 26273 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
64, 5eqeltrid 2844 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
73, 6syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℕ0)
87nn0red 12590 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 ∈ ℝ)
9 dgrub.1 . . . . . 6 𝐴 = (coeff‘𝐹)
109dgrval 26268 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
114, 10eqtrid 2788 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
123, 11syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
139coef3 26272 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
143, 13syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ)
1514, 1ffvelcdmd 7104 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ ℂ)
16 simp3 1138 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ≠ 0)
17 eldifsn 4785 . . . . . 6 ((𝐴𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) ≠ 0))
1815, 16, 17sylanbrc 583 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝐴𝑀) ∈ (ℂ ∖ {0}))
199coef 26270 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
20 ffn 6735 . . . . . 6 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
21 elpreima 7077 . . . . . 6 (𝐴 Fn ℕ0 → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
223, 19, 20, 214syl 19 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (ℂ ∖ {0}))))
231, 18, 22mpbir2and 713 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀 ∈ (𝐴 “ (ℂ ∖ {0})))
24 nn0ssre 12532 . . . . . . 7 0 ⊆ ℝ
25 ltso 11342 . . . . . . 7 < Or ℝ
26 soss 5611 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
2724, 25, 26mp2 9 . . . . . 6 < Or ℕ0
2827a1i 11 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0)
29 0zd 12627 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
30 cnvimass 6099 . . . . . . 7 (𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴
3130, 19fssdm 6754 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0)
329dgrlem 26269 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
3332simprd 495 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
34 nn0uz 12921 . . . . . . 7 0 = (ℤ‘0)
3534uzsupss 12983 . . . . . 6 ((0 ∈ ℤ ∧ (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
3629, 31, 33, 35syl3anc 1372 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
3728, 36supub 9500 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (𝐴 “ (ℂ ∖ {0})) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀))
383, 23, 37sylc 65 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)
3912, 38eqnbrtrd 5160 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → ¬ 𝑁 < 𝑀)
402, 8, 39nltled 11412 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  cdif 3947  cun 3948  wss 3950  {csn 4625   class class class wbr 5142   Or wor 5590  ccnv 5683  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  supcsup 9481  cc 11154  cr 11155  0cc0 11156   < clt 11296  cle 11297  0cn0 12528  cz 12615  Polycply 26224  coeffccoe 26226  degcdgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-0p 25706  df-ply 26228  df-coe 26230  df-dgr 26231
This theorem is referenced by:  dgrub2  26275  coeidlem  26277  coeid3  26280  dgreq  26284  coemullem  26290  coemulhi  26294  coemulc  26295  dgreq0  26306  dgrlt  26307  dgradd2  26309  dgrmul  26311  vieta1lem2  26354  aannenlem2  26372
  Copyright terms: Public domain W3C validator