| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrub | Structured version Visualization version GIF version | ||
| Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
| Ref | Expression |
|---|---|
| dgrub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℕ0) | |
| 2 | 1 | nn0red 12440 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℝ) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆)) | |
| 4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 5 | dgrcl 26163 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 6 | 4, 5 | eqeltrid 2835 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℕ0) |
| 8 | 7 | nn0red 12440 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℝ) |
| 9 | dgrub.1 | . . . . . 6 ⊢ 𝐴 = (coeff‘𝐹) | |
| 10 | 9 | dgrval 26158 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 11 | 4, 10 | eqtrid 2778 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 13 | 9 | coef3 26162 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ) |
| 15 | 14, 1 | ffvelcdmd 7018 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ ℂ) |
| 16 | simp3 1138 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ≠ 0) | |
| 17 | eldifsn 4738 | . . . . . 6 ⊢ ((𝐴‘𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0)) | |
| 18 | 15, 16, 17 | sylanbrc 583 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ (ℂ ∖ {0})) |
| 19 | 9 | coef 26160 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 20 | ffn 6651 | . . . . . 6 ⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0) | |
| 21 | elpreima 6991 | . . . . . 6 ⊢ (𝐴 Fn ℕ0 → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) | |
| 22 | 3, 19, 20, 21 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) |
| 23 | 1, 18, 22 | mpbir2and 713 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0}))) |
| 24 | nn0ssre 12382 | . . . . . . 7 ⊢ ℕ0 ⊆ ℝ | |
| 25 | ltso 11190 | . . . . . . 7 ⊢ < Or ℝ | |
| 26 | soss 5544 | . . . . . . 7 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 27 | 24, 25, 26 | mp2 9 | . . . . . 6 ⊢ < Or ℕ0 |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
| 29 | 0zd 12477 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 30 | cnvimass 6031 | . . . . . . 7 ⊢ (◡𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴 | |
| 31 | 30, 19 | fssdm 6670 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0) |
| 32 | 9 | dgrlem 26159 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
| 33 | 32 | simprd 495 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
| 34 | nn0uz 12771 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 35 | 34 | uzsupss 12835 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 36 | 29, 31, 33, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 37 | 28, 36 | supub 9343 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)) |
| 38 | 3, 23, 37 | sylc 65 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀) |
| 39 | 12, 38 | eqnbrtrd 5109 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ 𝑁 < 𝑀) |
| 40 | 2, 8, 39 | nltled 11260 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∖ cdif 3899 ∪ cun 3900 ⊆ wss 3902 {csn 4576 class class class wbr 5091 Or wor 5523 ◡ccnv 5615 “ cima 5619 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 supcsup 9324 ℂcc 11001 ℝcr 11002 0cc0 11003 < clt 11143 ≤ cle 11144 ℕ0cn0 12378 ℤcz 12465 Polycply 26114 coeffccoe 26116 degcdgr 26117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 df-sum 15591 df-0p 25596 df-ply 26118 df-coe 26120 df-dgr 26121 |
| This theorem is referenced by: dgrub2 26165 coeidlem 26167 coeid3 26170 dgreq 26174 coemullem 26180 coemulhi 26184 coemulc 26185 dgreq0 26196 dgrlt 26197 dgradd2 26199 dgrmul 26201 vieta1lem2 26244 aannenlem2 26262 |
| Copyright terms: Public domain | W3C validator |