Step | Hyp | Ref
| Expression |
1 | | simp2 1137 |
. . 3
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π β
β0) |
2 | 1 | nn0red 12537 |
. 2
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π β β) |
3 | | simp1 1136 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β πΉ β (Polyβπ)) |
4 | | dgrub.2 |
. . . . 5
β’ π = (degβπΉ) |
5 | | dgrcl 25971 |
. . . . 5
β’ (πΉ β (Polyβπ) β (degβπΉ) β
β0) |
6 | 4, 5 | eqeltrid 2837 |
. . . 4
β’ (πΉ β (Polyβπ) β π β
β0) |
7 | 3, 6 | syl 17 |
. . 3
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π β
β0) |
8 | 7 | nn0red 12537 |
. 2
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π β β) |
9 | | dgrub.1 |
. . . . . 6
β’ π΄ = (coeffβπΉ) |
10 | 9 | dgrval 25966 |
. . . . 5
β’ (πΉ β (Polyβπ) β (degβπΉ) = sup((β‘π΄ β (β β {0})),
β0, < )) |
11 | 4, 10 | eqtrid 2784 |
. . . 4
β’ (πΉ β (Polyβπ) β π = sup((β‘π΄ β (β β {0})),
β0, < )) |
12 | 3, 11 | syl 17 |
. . 3
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π = sup((β‘π΄ β (β β {0})),
β0, < )) |
13 | 9 | coef3 25970 |
. . . . . . . 8
β’ (πΉ β (Polyβπ) β π΄:β0βΆβ) |
14 | 3, 13 | syl 17 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π΄:β0βΆβ) |
15 | 14, 1 | ffvelcdmd 7087 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β (π΄βπ) β β) |
16 | | simp3 1138 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β (π΄βπ) β 0) |
17 | | eldifsn 4790 |
. . . . . 6
β’ ((π΄βπ) β (β β {0}) β
((π΄βπ) β β β§ (π΄βπ) β 0)) |
18 | 15, 16, 17 | sylanbrc 583 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β (π΄βπ) β (β β
{0})) |
19 | 9 | coef 25968 |
. . . . . 6
β’ (πΉ β (Polyβπ) β π΄:β0βΆ(π βͺ {0})) |
20 | | ffn 6717 |
. . . . . 6
β’ (π΄:β0βΆ(π βͺ {0}) β π΄ Fn
β0) |
21 | | elpreima 7059 |
. . . . . 6
β’ (π΄ Fn β0 β
(π β (β‘π΄ β (β β {0})) β
(π β
β0 β§ (π΄βπ) β (β β
{0})))) |
22 | 3, 19, 20, 21 | 4syl 19 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β (π β (β‘π΄ β (β β {0})) β
(π β
β0 β§ (π΄βπ) β (β β
{0})))) |
23 | 1, 18, 22 | mpbir2and 711 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π β (β‘π΄ β (β β
{0}))) |
24 | | nn0ssre 12480 |
. . . . . . 7
β’
β0 β β |
25 | | ltso 11298 |
. . . . . . 7
β’ < Or
β |
26 | | soss 5608 |
. . . . . . 7
β’
(β0 β β β ( < Or β β
< Or β0)) |
27 | 24, 25, 26 | mp2 9 |
. . . . . 6
β’ < Or
β0 |
28 | 27 | a1i 11 |
. . . . 5
β’ (πΉ β (Polyβπ) β < Or
β0) |
29 | | 0zd 12574 |
. . . . . 6
β’ (πΉ β (Polyβπ) β 0 β
β€) |
30 | | cnvimass 6080 |
. . . . . . 7
β’ (β‘π΄ β (β β {0})) β dom
π΄ |
31 | 30, 19 | fssdm 6737 |
. . . . . 6
β’ (πΉ β (Polyβπ) β (β‘π΄ β (β β {0})) β
β0) |
32 | 9 | dgrlem 25967 |
. . . . . . 7
β’ (πΉ β (Polyβπ) β (π΄:β0βΆ(π βͺ {0}) β§ βπ β β€ βπ₯ β (β‘π΄ β (β β {0}))π₯ β€ π)) |
33 | 32 | simprd 496 |
. . . . . 6
β’ (πΉ β (Polyβπ) β βπ β β€ βπ₯ β (β‘π΄ β (β β {0}))π₯ β€ π) |
34 | | nn0uz 12868 |
. . . . . . 7
β’
β0 = (β€β₯β0) |
35 | 34 | uzsupss 12928 |
. . . . . 6
β’ ((0
β β€ β§ (β‘π΄ β (β β {0}))
β β0 β§ βπ β β€ βπ₯ β (β‘π΄ β (β β {0}))π₯ β€ π) β βπ β β0 (βπ₯ β (β‘π΄ β (β β {0})) Β¬ π < π₯ β§ βπ₯ β β0 (π₯ < π β βπ¦ β (β‘π΄ β (β β {0}))π₯ < π¦))) |
36 | 29, 31, 33, 35 | syl3anc 1371 |
. . . . 5
β’ (πΉ β (Polyβπ) β βπ β β0
(βπ₯ β (β‘π΄ β (β β {0})) Β¬ π < π₯ β§ βπ₯ β β0 (π₯ < π β βπ¦ β (β‘π΄ β (β β {0}))π₯ < π¦))) |
37 | 28, 36 | supub 9456 |
. . . 4
β’ (πΉ β (Polyβπ) β (π β (β‘π΄ β (β β {0})) β Β¬
sup((β‘π΄ β (β β {0})),
β0, < ) < π)) |
38 | 3, 23, 37 | sylc 65 |
. . 3
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β Β¬ sup((β‘π΄ β (β β {0})),
β0, < ) < π) |
39 | 12, 38 | eqnbrtrd 5166 |
. 2
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β Β¬ π < π) |
40 | 2, 8, 39 | nltled 11368 |
1
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π β€ π) |