| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrub | Structured version Visualization version GIF version | ||
| Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
| Ref | Expression |
|---|---|
| dgrub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℕ0) | |
| 2 | 1 | nn0red 12450 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℝ) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆)) | |
| 4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 5 | dgrcl 26166 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 6 | 4, 5 | eqeltrid 2837 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℕ0) |
| 8 | 7 | nn0red 12450 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℝ) |
| 9 | dgrub.1 | . . . . . 6 ⊢ 𝐴 = (coeff‘𝐹) | |
| 10 | 9 | dgrval 26161 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 11 | 4, 10 | eqtrid 2780 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 13 | 9 | coef3 26165 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ) |
| 15 | 14, 1 | ffvelcdmd 7024 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ ℂ) |
| 16 | simp3 1138 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ≠ 0) | |
| 17 | eldifsn 4737 | . . . . . 6 ⊢ ((𝐴‘𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0)) | |
| 18 | 15, 16, 17 | sylanbrc 583 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ (ℂ ∖ {0})) |
| 19 | 9 | coef 26163 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 20 | ffn 6656 | . . . . . 6 ⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0) | |
| 21 | elpreima 6997 | . . . . . 6 ⊢ (𝐴 Fn ℕ0 → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) | |
| 22 | 3, 19, 20, 21 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) |
| 23 | 1, 18, 22 | mpbir2and 713 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0}))) |
| 24 | nn0ssre 12392 | . . . . . . 7 ⊢ ℕ0 ⊆ ℝ | |
| 25 | ltso 11200 | . . . . . . 7 ⊢ < Or ℝ | |
| 26 | soss 5547 | . . . . . . 7 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 27 | 24, 25, 26 | mp2 9 | . . . . . 6 ⊢ < Or ℕ0 |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
| 29 | 0zd 12487 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 30 | cnvimass 6035 | . . . . . . 7 ⊢ (◡𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴 | |
| 31 | 30, 19 | fssdm 6675 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0) |
| 32 | 9 | dgrlem 26162 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
| 33 | 32 | simprd 495 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
| 34 | nn0uz 12776 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 35 | 34 | uzsupss 12840 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 36 | 29, 31, 33, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 37 | 28, 36 | supub 9350 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)) |
| 38 | 3, 23, 37 | sylc 65 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀) |
| 39 | 12, 38 | eqnbrtrd 5111 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ 𝑁 < 𝑀) |
| 40 | 2, 8, 39 | nltled 11270 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 {csn 4575 class class class wbr 5093 Or wor 5526 ◡ccnv 5618 “ cima 5622 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 supcsup 9331 ℂcc 11011 ℝcr 11012 0cc0 11013 < clt 11153 ≤ cle 11154 ℕ0cn0 12388 ℤcz 12475 Polycply 26117 coeffccoe 26119 degcdgr 26120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-0p 25599 df-ply 26121 df-coe 26123 df-dgr 26124 |
| This theorem is referenced by: dgrub2 26168 coeidlem 26170 coeid3 26173 dgreq 26177 coemullem 26183 coemulhi 26187 coemulc 26188 dgreq0 26199 dgrlt 26200 dgradd2 26202 dgrmul 26204 vieta1lem2 26247 aannenlem2 26265 |
| Copyright terms: Public domain | W3C validator |