| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrub | Structured version Visualization version GIF version | ||
| Description: If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
| Ref | Expression |
|---|---|
| dgrub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℕ0) | |
| 2 | 1 | nn0red 12511 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ ℝ) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐹 ∈ (Poly‘𝑆)) | |
| 4 | dgrub.2 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 5 | dgrcl 26145 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 6 | 4, 5 | eqeltrid 2833 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℕ0) |
| 8 | 7 | nn0red 12511 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 ∈ ℝ) |
| 9 | dgrub.1 | . . . . . 6 ⊢ 𝐴 = (coeff‘𝐹) | |
| 10 | 9 | dgrval 26140 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 11 | 4, 10 | eqtrid 2777 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 13 | 9 | coef3 26144 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝐴:ℕ0⟶ℂ) |
| 15 | 14, 1 | ffvelcdmd 7060 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ ℂ) |
| 16 | simp3 1138 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ≠ 0) | |
| 17 | eldifsn 4753 | . . . . . 6 ⊢ ((𝐴‘𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0)) | |
| 18 | 15, 16, 17 | sylanbrc 583 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝐴‘𝑀) ∈ (ℂ ∖ {0})) |
| 19 | 9 | coef 26142 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 20 | ffn 6691 | . . . . . 6 ⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0) | |
| 21 | elpreima 7033 | . . . . . 6 ⊢ (𝐴 Fn ℕ0 → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) | |
| 22 | 3, 19, 20, 21 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (ℂ ∖ {0})))) |
| 23 | 1, 18, 22 | mpbir2and 713 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0}))) |
| 24 | nn0ssre 12453 | . . . . . . 7 ⊢ ℕ0 ⊆ ℝ | |
| 25 | ltso 11261 | . . . . . . 7 ⊢ < Or ℝ | |
| 26 | soss 5569 | . . . . . . 7 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 27 | 24, 25, 26 | mp2 9 | . . . . . 6 ⊢ < Or ℕ0 |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
| 29 | 0zd 12548 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 30 | cnvimass 6056 | . . . . . . 7 ⊢ (◡𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴 | |
| 31 | 30, 19 | fssdm 6710 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0) |
| 32 | 9 | dgrlem 26141 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
| 33 | 32 | simprd 495 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
| 34 | nn0uz 12842 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 35 | 34 | uzsupss 12906 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (◡𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 36 | 29, 31, 33, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 37 | 28, 36 | supub 9417 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑀 ∈ (◡𝐴 “ (ℂ ∖ {0})) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀)) |
| 38 | 3, 23, 37 | sylc 65 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) < 𝑀) |
| 39 | 12, 38 | eqnbrtrd 5128 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → ¬ 𝑁 < 𝑀) |
| 40 | 2, 8, 39 | nltled 11331 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 {csn 4592 class class class wbr 5110 Or wor 5548 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 supcsup 9398 ℂcc 11073 ℝcr 11074 0cc0 11075 < clt 11215 ≤ cle 11216 ℕ0cn0 12449 ℤcz 12536 Polycply 26096 coeffccoe 26098 degcdgr 26099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-0p 25578 df-ply 26100 df-coe 26102 df-dgr 26103 |
| This theorem is referenced by: dgrub2 26147 coeidlem 26149 coeid3 26152 dgreq 26156 coemullem 26162 coemulhi 26166 coemulc 26167 dgreq0 26178 dgrlt 26179 dgradd2 26181 dgrmul 26183 vieta1lem2 26226 aannenlem2 26244 |
| Copyright terms: Public domain | W3C validator |