Step | Hyp | Ref
| Expression |
1 | | difss 4066 |
. . 3
⊢ (ℂ
∖ ℝ) ⊆ ℂ |
2 | | eldifi 4061 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → 𝑥 ∈
ℂ) |
3 | 2 | imcld 14906 |
. . . . . . 7
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (ℑ‘𝑥) ∈ ℝ) |
4 | 3 | recnd 11003 |
. . . . . 6
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (ℑ‘𝑥) ∈ ℂ) |
5 | | eldifn 4062 |
. . . . . . 7
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → ¬ 𝑥
∈ ℝ) |
6 | | reim0b 14830 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔
(ℑ‘𝑥) =
0)) |
7 | 2, 6 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (𝑥 ∈
ℝ ↔ (ℑ‘𝑥) = 0)) |
8 | 7 | necon3bbid 2981 |
. . . . . . 7
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (¬ 𝑥
∈ ℝ ↔ (ℑ‘𝑥) ≠ 0)) |
9 | 5, 8 | mpbid 231 |
. . . . . 6
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (ℑ‘𝑥) ≠ 0) |
10 | 4, 9 | absrpcld 15160 |
. . . . 5
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (abs‘(ℑ‘𝑥)) ∈
ℝ+) |
11 | | cnxmet 23936 |
. . . . . . . 8
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
12 | 4 | abscld 15148 |
. . . . . . . . 9
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ) |
13 | 12 | rexrd 11025 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (abs‘(ℑ‘𝑥)) ∈
ℝ*) |
14 | | elbl 23541 |
. . . . . . . 8
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧
(abs‘(ℑ‘𝑥)) ∈ ℝ*) → (𝑦 ∈ (𝑥(ball‘(abs ∘ −
))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))))) |
15 | 11, 2, 13, 14 | mp3an2i 1465 |
. . . . . . 7
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (𝑦 ∈
(𝑥(ball‘(abs ∘
− ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))))) |
16 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ (𝑦 ∈
ℂ ∧ (𝑥(abs
∘ − )𝑦) <
(abs‘(ℑ‘𝑥)))) → 𝑦 ∈ ℂ) |
17 | 2 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → 𝑥 ∈
ℂ) |
18 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → 𝑦 ∈
ℝ) |
19 | 18 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → 𝑦 ∈
ℂ) |
20 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (abs
∘ − ) = (abs ∘ − ) |
21 | 20 | cnmetdval 23934 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
22 | 17, 19, 21 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (𝑥(abs
∘ − )𝑦) =
(abs‘(𝑥 − 𝑦))) |
23 | 4 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (ℑ‘𝑥) ∈ ℂ) |
24 | 23 | abscld 15148 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ) |
25 | 17, 19 | subcld 11332 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (𝑥 −
𝑦) ∈
ℂ) |
26 | 25 | abscld 15148 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (abs‘(𝑥 − 𝑦)) ∈ ℝ) |
27 | 17, 19 | imsubd 14928 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (ℑ‘(𝑥 − 𝑦)) = ((ℑ‘𝑥) − (ℑ‘𝑦))) |
28 | | reim0 14829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℝ →
(ℑ‘𝑦) =
0) |
29 | 28 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (ℑ‘𝑦) = 0) |
30 | 29 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → ((ℑ‘𝑥) − (ℑ‘𝑦)) = ((ℑ‘𝑥) − 0)) |
31 | 23 | subid1d 11321 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → ((ℑ‘𝑥) − 0) = (ℑ‘𝑥)) |
32 | 27, 30, 31 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (ℑ‘(𝑥 − 𝑦)) = (ℑ‘𝑥)) |
33 | 32 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (abs‘(ℑ‘(𝑥 − 𝑦))) = (abs‘(ℑ‘𝑥))) |
34 | | absimle 15021 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 − 𝑦) ∈ ℂ →
(abs‘(ℑ‘(𝑥 − 𝑦))) ≤ (abs‘(𝑥 − 𝑦))) |
35 | 25, 34 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (abs‘(ℑ‘(𝑥 − 𝑦))) ≤ (abs‘(𝑥 − 𝑦))) |
36 | 33, 35 | eqbrtrrd 5098 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → (abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥 − 𝑦))) |
37 | 24, 26, 36 | lensymd 11126 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → ¬ (abs‘(𝑥 − 𝑦)) < (abs‘(ℑ‘𝑥))) |
38 | 22, 37 | eqnbrtrd 5092 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℝ) → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))) |
39 | 38 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (𝑦 ∈
ℝ → ¬ (𝑥(abs
∘ − )𝑦) <
(abs‘(ℑ‘𝑥)))) |
40 | 39 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → ((𝑥(abs
∘ − )𝑦) <
(abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ)) |
41 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ 𝑦 ∈
ℂ) → ((𝑥(abs
∘ − )𝑦) <
(abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ)) |
42 | 41 | impr 455 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ (𝑦 ∈
ℂ ∧ (𝑥(abs
∘ − )𝑦) <
(abs‘(ℑ‘𝑥)))) → ¬ 𝑦 ∈ ℝ) |
43 | 16, 42 | eldifd 3898 |
. . . . . . . 8
⊢ ((𝑥 ∈ (ℂ ∖
ℝ) ∧ (𝑦 ∈
ℂ ∧ (𝑥(abs
∘ − )𝑦) <
(abs‘(ℑ‘𝑥)))) → 𝑦 ∈ (ℂ ∖
ℝ)) |
44 | 43 | ex 413 |
. . . . . . 7
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → ((𝑦 ∈
ℂ ∧ (𝑥(abs
∘ − )𝑦) <
(abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖
ℝ))) |
45 | 15, 44 | sylbid 239 |
. . . . . 6
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (𝑦 ∈
(𝑥(ball‘(abs ∘
− ))(abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖
ℝ))) |
46 | 45 | ssrdv 3927 |
. . . . 5
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → (𝑥(ball‘(abs ∘ −
))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖
ℝ)) |
47 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑦 =
(abs‘(ℑ‘𝑥)) → (𝑥(ball‘(abs ∘ − ))𝑦) = (𝑥(ball‘(abs ∘ −
))(abs‘(ℑ‘𝑥)))) |
48 | 47 | sseq1d 3952 |
. . . . . 6
⊢ (𝑦 =
(abs‘(ℑ‘𝑥)) → ((𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖
ℝ) ↔ (𝑥(ball‘(abs ∘ −
))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖
ℝ))) |
49 | 48 | rspcev 3561 |
. . . . 5
⊢
(((abs‘(ℑ‘𝑥)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ −
))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)) →
∃𝑦 ∈
ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖
ℝ)) |
50 | 10, 46, 49 | syl2anc 584 |
. . . 4
⊢ (𝑥 ∈ (ℂ ∖
ℝ) → ∃𝑦
∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖
ℝ)) |
51 | 50 | rgen 3074 |
. . 3
⊢
∀𝑥 ∈
(ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ −
))𝑦) ⊆ (ℂ
∖ ℝ) |
52 | | recld2.1 |
. . . . . 6
⊢ 𝐽 =
(TopOpen‘ℂfld) |
53 | 52 | cnfldtopn 23945 |
. . . . 5
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
54 | 53 | elmopn2 23598 |
. . . 4
⊢ ((abs
∘ − ) ∈ (∞Met‘ℂ) → ((ℂ ∖
ℝ) ∈ 𝐽 ↔
((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+
(𝑥(ball‘(abs ∘
− ))𝑦) ⊆
(ℂ ∖ ℝ)))) |
55 | 11, 54 | ax-mp 5 |
. . 3
⊢ ((ℂ
∖ ℝ) ∈ 𝐽
↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖
ℝ)∃𝑦 ∈
ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖
ℝ))) |
56 | 1, 51, 55 | mpbir2an 708 |
. 2
⊢ (ℂ
∖ ℝ) ∈ 𝐽 |
57 | 52 | cnfldtop 23947 |
. . 3
⊢ 𝐽 ∈ Top |
58 | | ax-resscn 10928 |
. . 3
⊢ ℝ
⊆ ℂ |
59 | 53 | mopnuni 23594 |
. . . . 5
⊢ ((abs
∘ − ) ∈ (∞Met‘ℂ) → ℂ = ∪ 𝐽) |
60 | 11, 59 | ax-mp 5 |
. . . 4
⊢ ℂ =
∪ 𝐽 |
61 | 60 | iscld2 22179 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ℝ
⊆ ℂ) → (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈
𝐽)) |
62 | 57, 58, 61 | mp2an 689 |
. 2
⊢ (ℝ
∈ (Clsd‘𝐽)
↔ (ℂ ∖ ℝ) ∈ 𝐽) |
63 | 56, 62 | mpbir 230 |
1
⊢ ℝ
∈ (Clsd‘𝐽) |