MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Structured version   Visualization version   GIF version

Theorem recld2 24719
Description: The real numbers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
recld2 ℝ ∈ (Clsd‘𝐽)

Proof of Theorem recld2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4089 . . 3 (ℂ ∖ ℝ) ⊆ ℂ
2 eldifi 4084 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → 𝑥 ∈ ℂ)
32imcld 15120 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℝ)
43recnd 11162 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℂ)
5 eldifn 4085 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
6 reim0b 15044 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
72, 6syl 17 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
87necon3bbid 2962 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
95, 8mpbid 232 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ≠ 0)
104, 9absrpcld 15376 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ+)
11 cnxmet 24676 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
124abscld 15364 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
1312rexrd 11184 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ*)
14 elbl 24292 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(ℑ‘𝑥)) ∈ ℝ*) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
1511, 2, 13, 14mp3an2i 1468 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
16 simprl 770 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ ℂ)
172adantr 480 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
18 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1918recnd 11162 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
20 eqid 2729 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 24674 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2217, 19, 21syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
234adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
2423abscld 15364 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
2517, 19subcld 11493 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℂ)
2625abscld 15364 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) ∈ ℝ)
2717, 19imsubd 15142 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = ((ℑ‘𝑥) − (ℑ‘𝑦)))
28 reim0 15043 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (ℑ‘𝑦) = 0)
2928adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
3029oveq2d 7369 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − (ℑ‘𝑦)) = ((ℑ‘𝑥) − 0))
3123subid1d 11482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − 0) = (ℑ‘𝑥))
3227, 30, 313eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = (ℑ‘𝑥))
3332fveq2d 6830 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) = (abs‘(ℑ‘𝑥)))
34 absimle 15234 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦) ∈ ℂ → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3525, 34syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3633, 35eqbrtrrd 5119 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥𝑦)))
3724, 26, 36lensymd 11285 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥)))
3822, 37eqnbrtrd 5113 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))
3938ex 412 . . . . . . . . . . . 12 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ ℝ → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))))
4039con2d 134 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4140adantr 480 . . . . . . . . . 10 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4241impr 454 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → ¬ 𝑦 ∈ ℝ)
4316, 42eldifd 3916 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ (ℂ ∖ ℝ))
4443ex 412 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4515, 44sylbid 240 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4645ssrdv 3943 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ))
47 oveq2 7361 . . . . . . 7 (𝑦 = (abs‘(ℑ‘𝑥)) → (𝑥(ball‘(abs ∘ − ))𝑦) = (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))))
4847sseq1d 3969 . . . . . 6 (𝑦 = (abs‘(ℑ‘𝑥)) → ((𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ) ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)))
4948rspcev 3579 . . . . 5 (((abs‘(ℑ‘𝑥)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5010, 46, 49syl2anc 584 . . . 4 (𝑥 ∈ (ℂ ∖ ℝ) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5150rgen 3046 . . 3 𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)
52 recld2.1 . . . . . 6 𝐽 = (TopOpen‘ℂfld)
5352cnfldtopn 24685 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
5453elmopn2 24349 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))))
5511, 54ax-mp 5 . . 3 ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)))
561, 51, 55mpbir2an 711 . 2 (ℂ ∖ ℝ) ∈ 𝐽
5752cnfldtop 24687 . . 3 𝐽 ∈ Top
58 ax-resscn 11085 . . 3 ℝ ⊆ ℂ
5953mopnuni 24345 . . . . 5 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ℂ = 𝐽)
6011, 59ax-mp 5 . . . 4 ℂ = 𝐽
6160iscld2 22931 . . 3 ((𝐽 ∈ Top ∧ ℝ ⊆ ℂ) → (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽))
6257, 58, 61mp2an 692 . 2 (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽)
6356, 62mpbir 231 1 ℝ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  wss 3905   cuni 4861   class class class wbr 5095  ccom 5627  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  *cxr 11167   < clt 11168  cle 11169  cmin 11365  +crp 12911  cim 15023  abscabs 15159  TopOpenctopn 17343  ∞Metcxmet 21264  ballcbl 21266  fldccnfld 21279  Topctop 22796  Clsdccld 22919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17344  df-topn 17345  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-xms 24224  df-ms 24225
This theorem is referenced by:  zcld2  24720  rellycmp  24872  recmet  25239  ishl2  25286  recms  25296  logdmopn  26574  dvasin  37683  dvacos  37684  dvreasin  37685  dvreacos  37686
  Copyright terms: Public domain W3C validator