MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Structured version   Visualization version   GIF version

Theorem recld2 24818
Description: The real numbers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
recld2 ℝ ∈ (Clsd‘𝐽)

Proof of Theorem recld2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4128 . . 3 (ℂ ∖ ℝ) ⊆ ℂ
2 eldifi 4123 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → 𝑥 ∈ ℂ)
32imcld 15195 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℝ)
43recnd 11283 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℂ)
5 eldifn 4124 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
6 reim0b 15119 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
72, 6syl 17 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
87necon3bbid 2968 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
95, 8mpbid 231 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ≠ 0)
104, 9absrpcld 15448 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ+)
11 cnxmet 24777 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
124abscld 15436 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
1312rexrd 11305 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ*)
14 elbl 24382 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(ℑ‘𝑥)) ∈ ℝ*) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
1511, 2, 13, 14mp3an2i 1463 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
16 simprl 769 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ ℂ)
172adantr 479 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
18 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1918recnd 11283 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
20 eqid 2726 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 24775 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2217, 19, 21syl2anc 582 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
234adantr 479 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
2423abscld 15436 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
2517, 19subcld 11612 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℂ)
2625abscld 15436 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) ∈ ℝ)
2717, 19imsubd 15217 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = ((ℑ‘𝑥) − (ℑ‘𝑦)))
28 reim0 15118 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (ℑ‘𝑦) = 0)
2928adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
3029oveq2d 7432 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − (ℑ‘𝑦)) = ((ℑ‘𝑥) − 0))
3123subid1d 11601 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − 0) = (ℑ‘𝑥))
3227, 30, 313eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = (ℑ‘𝑥))
3332fveq2d 6897 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) = (abs‘(ℑ‘𝑥)))
34 absimle 15309 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦) ∈ ℂ → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3525, 34syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3633, 35eqbrtrrd 5169 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥𝑦)))
3724, 26, 36lensymd 11406 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥)))
3822, 37eqnbrtrd 5163 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))
3938ex 411 . . . . . . . . . . . 12 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ ℝ → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))))
4039con2d 134 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4140adantr 479 . . . . . . . . . 10 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4241impr 453 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → ¬ 𝑦 ∈ ℝ)
4316, 42eldifd 3957 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ (ℂ ∖ ℝ))
4443ex 411 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4515, 44sylbid 239 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4645ssrdv 3984 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ))
47 oveq2 7424 . . . . . . 7 (𝑦 = (abs‘(ℑ‘𝑥)) → (𝑥(ball‘(abs ∘ − ))𝑦) = (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))))
4847sseq1d 4010 . . . . . 6 (𝑦 = (abs‘(ℑ‘𝑥)) → ((𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ) ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)))
4948rspcev 3607 . . . . 5 (((abs‘(ℑ‘𝑥)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5010, 46, 49syl2anc 582 . . . 4 (𝑥 ∈ (ℂ ∖ ℝ) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5150rgen 3053 . . 3 𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)
52 recld2.1 . . . . . 6 𝐽 = (TopOpen‘ℂfld)
5352cnfldtopn 24786 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
5453elmopn2 24439 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))))
5511, 54ax-mp 5 . . 3 ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)))
561, 51, 55mpbir2an 709 . 2 (ℂ ∖ ℝ) ∈ 𝐽
5752cnfldtop 24788 . . 3 𝐽 ∈ Top
58 ax-resscn 11206 . . 3 ℝ ⊆ ℂ
5953mopnuni 24435 . . . . 5 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ℂ = 𝐽)
6011, 59ax-mp 5 . . . 4 ℂ = 𝐽
6160iscld2 23020 . . 3 ((𝐽 ∈ Top ∧ ℝ ⊆ ℂ) → (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽))
6257, 58, 61mp2an 690 . 2 (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽)
6356, 62mpbir 230 1 ℝ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  cdif 3943  wss 3946   cuni 4905   class class class wbr 5145  ccom 5678  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  0cc0 11149  *cxr 11288   < clt 11289  cle 11290  cmin 11485  +crp 13022  cim 15098  abscabs 15234  TopOpenctopn 17431  ∞Metcxmet 21324  ballcbl 21326  fldccnfld 21339  Topctop 22883  Clsdccld 23008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-fz 13533  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-struct 17144  df-slot 17179  df-ndx 17191  df-base 17209  df-plusg 17274  df-mulr 17275  df-starv 17276  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-rest 17432  df-topn 17433  df-topgen 17453  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-cnfld 21340  df-top 22884  df-topon 22901  df-topsp 22923  df-bases 22937  df-cld 23011  df-xms 24314  df-ms 24315
This theorem is referenced by:  zcld2  24819  rellycmp  24971  recmet  25339  ishl2  25386  recms  25396  logdmopn  26673  dvasin  37418  dvacos  37419  dvreasin  37420  dvreacos  37421
  Copyright terms: Public domain W3C validator