MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Structured version   Visualization version   GIF version

Theorem recld2 23528
Description: The real numbers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
recld2 ℝ ∈ (Clsd‘𝐽)

Proof of Theorem recld2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4039 . . 3 (ℂ ∖ ℝ) ⊆ ℂ
2 eldifi 4034 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → 𝑥 ∈ ℂ)
32imcld 14615 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℝ)
43recnd 10720 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℂ)
5 eldifn 4035 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
6 reim0b 14539 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
72, 6syl 17 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
87necon3bbid 2988 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
95, 8mpbid 235 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ≠ 0)
104, 9absrpcld 14869 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ+)
11 cnxmet 23487 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
124abscld 14857 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
1312rexrd 10742 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ*)
14 elbl 23103 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(ℑ‘𝑥)) ∈ ℝ*) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
1511, 2, 13, 14mp3an2i 1463 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
16 simprl 770 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ ℂ)
172adantr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
18 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1918recnd 10720 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
20 eqid 2758 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 23485 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2217, 19, 21syl2anc 587 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
234adantr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
2423abscld 14857 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
2517, 19subcld 11048 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℂ)
2625abscld 14857 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) ∈ ℝ)
2717, 19imsubd 14637 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = ((ℑ‘𝑥) − (ℑ‘𝑦)))
28 reim0 14538 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (ℑ‘𝑦) = 0)
2928adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
3029oveq2d 7172 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − (ℑ‘𝑦)) = ((ℑ‘𝑥) − 0))
3123subid1d 11037 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − 0) = (ℑ‘𝑥))
3227, 30, 313eqtrd 2797 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = (ℑ‘𝑥))
3332fveq2d 6667 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) = (abs‘(ℑ‘𝑥)))
34 absimle 14730 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦) ∈ ℂ → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3525, 34syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3633, 35eqbrtrrd 5060 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥𝑦)))
3724, 26, 36lensymd 10842 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥)))
3822, 37eqnbrtrd 5054 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))
3938ex 416 . . . . . . . . . . . 12 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ ℝ → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))))
4039con2d 136 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4140adantr 484 . . . . . . . . . 10 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4241impr 458 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → ¬ 𝑦 ∈ ℝ)
4316, 42eldifd 3871 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ (ℂ ∖ ℝ))
4443ex 416 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4515, 44sylbid 243 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4645ssrdv 3900 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ))
47 oveq2 7164 . . . . . . 7 (𝑦 = (abs‘(ℑ‘𝑥)) → (𝑥(ball‘(abs ∘ − ))𝑦) = (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))))
4847sseq1d 3925 . . . . . 6 (𝑦 = (abs‘(ℑ‘𝑥)) → ((𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ) ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)))
4948rspcev 3543 . . . . 5 (((abs‘(ℑ‘𝑥)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5010, 46, 49syl2anc 587 . . . 4 (𝑥 ∈ (ℂ ∖ ℝ) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5150rgen 3080 . . 3 𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)
52 recld2.1 . . . . . 6 𝐽 = (TopOpen‘ℂfld)
5352cnfldtopn 23496 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
5453elmopn2 23160 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))))
5511, 54ax-mp 5 . . 3 ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)))
561, 51, 55mpbir2an 710 . 2 (ℂ ∖ ℝ) ∈ 𝐽
5752cnfldtop 23498 . . 3 𝐽 ∈ Top
58 ax-resscn 10645 . . 3 ℝ ⊆ ℂ
5953mopnuni 23156 . . . . 5 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ℂ = 𝐽)
6011, 59ax-mp 5 . . . 4 ℂ = 𝐽
6160iscld2 21741 . . 3 ((𝐽 ∈ Top ∧ ℝ ⊆ ℂ) → (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽))
6257, 58, 61mp2an 691 . 2 (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽)
6356, 62mpbir 234 1 ℝ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  cdif 3857  wss 3860   cuni 4801   class class class wbr 5036  ccom 5532  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  0cc0 10588  *cxr 10725   < clt 10726  cle 10727  cmin 10921  +crp 12443  cim 14518  abscabs 14654  TopOpenctopn 16766  ∞Metcxmet 20164  ballcbl 20166  fldccnfld 20179  Topctop 21606  Clsdccld 21729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-fz 12953  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-plusg 16649  df-mulr 16650  df-starv 16651  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-rest 16767  df-topn 16768  df-topgen 16788  df-psmet 20171  df-xmet 20172  df-met 20173  df-bl 20174  df-mopn 20175  df-cnfld 20180  df-top 21607  df-topon 21624  df-topsp 21646  df-bases 21659  df-cld 21732  df-xms 23035  df-ms 23036
This theorem is referenced by:  zcld2  23529  rellycmp  23671  recmet  24036  ishl2  24083  recms  24093  logdmopn  25352  dvasin  35455  dvacos  35456  dvreasin  35457  dvreacos  35458
  Copyright terms: Public domain W3C validator